AutoGPTQ/examples/README.md

72 lines
No EOL
3 KiB
Markdown

# Examples
To run example scripts in this folder, one must first install `auto_gptq` as described in [this](../README.md)
## Quantization
> Commands in this chapter should be run under `quantization` folder.
### Basic Usage
To Execute `basic_usage.py`, using command like this:
```shell
python basic_usage.py
```
### Quantize with Alpaca
To Execute `quant_with_alpaca.py`, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python quant_with_alpaca.py --pretrained_model_dir "facebook/opt-125m"
```
The alpaca dataset used in here is a cleaned version provided by **gururise** in [AlpacaDataCleaned](https://github.com/gururise/AlpacaDataCleaned)
## Evaluation
> Commands in this chapter should be run under `evaluation` folder.
### Language Modeling Task
`run_language_modeling_task.py` script gives an example of using `LanguageModelingTask` to evaluate model's performance on language modeling task before and after quantization using `tatsu-lab/alpaca` dataset.
To execute this script, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python run_language_modeling_task.py --base_model_dir PATH/TO/BASE/MODEL/DIR --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR
```
Use `--help` flag to see detailed descriptions for more command arguments.
### Sequence Classification Task
`run_sequence_classification_task.py` script gives an example of using `SequenceClassificationTask` to evaluate model's performance on sequence classification task before and after quantization using `cardiffnlp/tweet_sentiment_multilingual` dataset.
To execute this script, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python run_sequence_classification_task.py --base_model_dir PATH/TO/BASE/MODEL/DIR --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR
```
Use `--help` flag to see detailed descriptions for more command arguments.
### Text Summarization Task
`run_text_summarization_task.py` script gives an example of using `TextSummarizationTask` to evaluate model's performance on text summarization task before and after quantization using `samsum` dataset.
To execute this script, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python run_text_summarization_task.py --base_model_dir PATH/TO/BASE/MODEL/DIR --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR
```
Use `--help` flag to see detailed descriptions for more command arguments.
## Push To Hub
> Commands in this chapter should be run under `push_to_hub` folder.
You can upload and share your quantized model to Hugging Face Hub by using `push_to_hub` function.
`push_quantized_model_to_hf_hub.py` provide a simple example to upload quantized model, tokenizer and configs at once.
First, you need to login, run the following command in the virtual environment where Hugging Face Transformers is installed:
```shell
huggingface-cli login
```
Then run the script like this:
```shell
python push_quantized_model_to_hf_hub.py --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR --tokenizer_dir PATH/TO/TOKENIZER/DIR --repo_id REPO/ID
```
Use `--help` flag to see detailed descriptions for more command arguments.