# Examples To run example scripts in this folder, one must first install `auto_gptq` as described in [this](../README.md) ## Quantization > Commands in this chapter should be run under `quantization` folder. ### Basic Usage To Execute `basic_usage.py`, using command like this: ```shell python basic_usage.py ``` ### Quantize with Alpaca To Execute `quant_with_alpaca.py`, using command like this: ```shell CUDA_VISIBLE_DEVICES=0 python quant_with_alpaca.py --pretrained_model_dir "facebook/opt-125m" ``` The alpaca dataset used in here is a cleaned version provided by **gururise** in [AlpacaDataCleaned](https://github.com/gururise/AlpacaDataCleaned) ## Evaluation > Commands in this chapter should be run under `evaluation` folder. ### Language Modeling Task `run_language_modeling_task.py` script gives an example of using `LanguageModelingTask` to evaluate model's performance on language modeling task before and after quantization using `tatsu-lab/alpaca` dataset. To execute this script, using command like this: ```shell CUDA_VISIBLE_DEVICES=0 python run_language_modeling_task.py --base_model_dir PATH/TO/BASE/MODEL/DIR --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR ``` Use `--help` flag to see detailed descriptions for more command arguments. ### Sequence Classification Task `run_sequence_classification_task.py` script gives an example of using `SequenceClassificationTask` to evaluate model's performance on sequence classification task before and after quantization using `cardiffnlp/tweet_sentiment_multilingual` dataset. To execute this script, using command like this: ```shell CUDA_VISIBLE_DEVICES=0 python run_sequence_classification_task.py --base_model_dir PATH/TO/BASE/MODEL/DIR --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR ``` Use `--help` flag to see detailed descriptions for more command arguments. ### Text Summarization Task `run_text_summarization_task.py` script gives an example of using `TextSummarizationTask` to evaluate model's performance on text summarization task before and after quantization using `samsum` dataset. To execute this script, using command like this: ```shell CUDA_VISIBLE_DEVICES=0 python run_text_summarization_task.py --base_model_dir PATH/TO/BASE/MODEL/DIR --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR ``` Use `--help` flag to see detailed descriptions for more command arguments. ## Push To Hub > Commands in this chapter should be run under `push_to_hub` folder. You can upload and share your quantized model to Hugging Face Hub by using `push_to_hub` function. `push_quantized_model_to_hf_hub.py` provide a simple example to upload quantized model, tokenizer and configs at once. First, you need to login, run the following command in the virtual environment where Hugging Face Transformers is installed: ```shell huggingface-cli login ``` Then run the script like this: ```shell python push_quantized_model_to_hf_hub.py --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR --tokenizer_dir PATH/TO/TOKENIZER/DIR --repo_id REPO/ID ``` Use `--help` flag to see detailed descriptions for more command arguments.