1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/lib/model/session.py
torzdf aa39234538
Update all Keras Imports to be conditional (#1214)
* Remove custom keras importer

* first round keras imports fix

* launcher.py: Remove KerasFinder references

* 2nd round keras imports update (lib and extract)

* 3rd round keras imports update (train)

* remove KerasFinder from tests

* 4th round keras imports update (tests)
2022-05-03 20:18:39 +01:00

212 lines
9.2 KiB
Python

#!/usr/bin python3
""" Settings manager for Keras Backend """
import logging
import numpy as np
import tensorflow as tf
from lib.utils import get_backend
if get_backend() == "amd":
from keras.layers import Activation
from keras.models import load_model as k_load_model, Model
else:
# Ignore linting errors from Tensorflow's thoroughly broken import system
from tensorflow.keras.layers import Activation # noqa pylint:disable=no-name-in-module,import-error
from tensorflow.keras.models import load_model as k_load_model, Model # noqa pylint:disable=no-name-in-module,import-error
logger = logging.getLogger(__name__) # pylint:disable=invalid-name
class KSession():
""" Handles the settings of backend sessions for inference models.
This class acts as a wrapper for various :class:`keras.Model()` functions, ensuring that
actions performed on a model are handled consistently and can be performed in parallel in
separate threads.
This is an early implementation of this class, and should be expanded out over time
with relevant `AMD`, `CPU` and `NVIDIA` backend methods.
Notes
-----
The documentation refers to :mod:`keras`. This is a pseudonym for either :mod:`keras` or
:mod:`tensorflow.keras` depending on the backend in use.
Parameters
----------
name: str
The name of the model that is to be loaded
model_path: str
The path to the keras model file
model_kwargs: dict, optional
Any kwargs that need to be passed to :func:`keras.models.load_models()`. Default: ``None``
allow_growth: bool, optional
Enable the Tensorflow GPU allow_growth configuration option. This option prevents
Tensorflow from allocating all of the GPU VRAM, but can lead to higher fragmentation and
slower performance. Default: ``False``
exclude_gpus: list, optional
A list of indices correlating to connected GPUs that Tensorflow should not use. Pass
``None`` to not exclude any GPUs. Default: ``None``
"""
def __init__(self, name, model_path, model_kwargs=None, allow_growth=False, exclude_gpus=None):
logger.trace("Initializing: %s (name: %s, model_path: %s, model_kwargs: %s, "
"allow_growth: %s, exclude_gpus: %s)", self.__class__.__name__, name,
model_path, model_kwargs, allow_growth, exclude_gpus)
self._name = name
self._backend = get_backend()
self._set_session(allow_growth, exclude_gpus)
self._model_path = model_path
self._model_kwargs = {} if not model_kwargs else model_kwargs
self._model = None
logger.trace("Initialized: %s", self.__class__.__name__,)
def predict(self, feed, batch_size=None):
""" Get predictions from the model.
This method is a wrapper for :func:`keras.predict()` function. For Tensorflow backends
this is a straight call to the predict function. For PlaidML backends, this attempts
to optimize the inference batch sizes to reduce the number of kernels that need to be
compiled.
Parameters
----------
feed: numpy.ndarray or list
The feed to be provided to the model as input. This should be a :class:`numpy.ndarray`
for single inputs or a `list` of :class:`numpy.ndarray` objects for multiple inputs.
"""
if self._backend == "amd" and batch_size is not None:
return self._amd_predict_with_optimized_batchsizes(feed, batch_size)
return self._model.predict(feed, batch_size=batch_size)
def _amd_predict_with_optimized_batchsizes(self, feed, batch_size):
""" Minimizes the amount of kernels to be compiled when using the ``amd`` backend with
varying batch sizes while trying to keep the batchsize as high as possible.
Parameters
----------
feed: numpy.ndarray or list
The feed to be provided to the model as input. This should be a ``numpy.ndarray``
for single inputs or a ``list`` of ``numpy.ndarray`` objects for multiple inputs.
batch_size: int
The upper batchsize to use.
"""
if isinstance(feed, np.ndarray):
feed = [feed]
items = feed[0].shape[0]
done_items = 0
results = []
while done_items < items:
if batch_size < 4: # Not much difference in BS < 4
batch_size = 1
batch_items = ((items - done_items) // batch_size) * batch_size
if batch_items:
pred_data = [x[done_items:done_items + batch_items] for x in feed]
pred = self._model.predict(pred_data, batch_size=batch_size)
done_items += batch_items
results.append(pred)
batch_size //= 2
if isinstance(results[0], np.ndarray):
return np.concatenate(results)
return [np.concatenate(x) for x in zip(*results)]
def _set_session(self, allow_growth, exclude_gpus):
""" Sets the backend session options.
For AMD backend this does nothing.
For CPU backends, this hides any GPUs from Tensorflow.
For Nvidia backends, this hides any GPUs that Tensorflow should not use and applies
any allow growth settings
Parameters
----------
allow_growth: bool, optional
Enable the Tensorflow GPU allow_growth configuration option. This option prevents
Tensorflow from allocating all of the GPU VRAM, but can lead to higher fragmentation
and slower performance. Default: False
exclude_gpus: list, optional
A list of indices correlating to connected GPUs that Tensorflow should not use. Pass
``None`` to not exclude any GPUs. Default: ``None``
"""
if self._backend == "amd":
return
if self._backend == "cpu":
logger.verbose("Hiding GPUs from Tensorflow")
tf.config.set_visible_devices([], "GPU")
return
gpus = tf.config.list_physical_devices('GPU')
if exclude_gpus:
gpus = [gpu for idx, gpu in enumerate(gpus) if idx not in exclude_gpus]
logger.debug("Filtering devices to: %s", gpus)
tf.config.set_visible_devices(gpus, "GPU")
if allow_growth:
for gpu in gpus:
logger.info("Setting allow growth for GPU: %s", gpu)
tf.config.experimental.set_memory_growth(gpu, True)
def load_model(self):
""" Loads a model.
This method is a wrapper for :func:`keras.models.load_model()`. Loads a model and its
weights from :attr:`model_path` defined during initialization of this class. Any additional
``kwargs`` to be passed to :func:`keras.models.load_model()` should also be defined during
initialization of the class.
For Tensorflow backends, the `make_predict_function` method is called on the model to make
it thread safe.
"""
logger.verbose("Initializing plugin model: %s", self._name)
self._model = k_load_model(self._model_path, compile=False, **self._model_kwargs)
if self._backend != "amd":
self._model.make_predict_function()
def define_model(self, function):
""" Defines a model from the given function.
This method acts as a wrapper for :class:`keras.models.Model()`.
Parameters
----------
function: function
A function that defines a :class:`keras.Model` and returns it's ``inputs`` and
``outputs``. The function that generates these results should be passed in, NOT the
results themselves, as the function needs to be executed within the correct context.
"""
self._model = Model(*function())
def load_model_weights(self):
""" Load model weights for a defined model inside the correct session.
This method is a wrapper for :class:`keras.load_weights()`. Once a model has been defined
in :func:`define_model()` this method can be called to load its weights from the
:attr:`model_path` defined during initialization of this class.
For Tensorflow backends, the `make_predict_function` method is called on the model to make
it thread safe.
"""
logger.verbose("Initializing plugin model: %s", self._name)
self._model.load_weights(self._model_path)
if self._backend != "amd":
self._model.make_predict_function()
def append_softmax_activation(self, layer_index=-1):
""" Append a softmax activation layer to a model
Occasionally a softmax activation layer needs to be added to a model's output.
This is a convenience function to append this layer to the loaded model.
Parameters
----------
layer_index: int, optional
The layer index of the model to select the output from to use as an input to the
softmax activation layer. Default: `-1` (The final layer of the model)
"""
logger.debug("Appending Softmax Activation to model: (layer_index: %s)", layer_index)
softmax = Activation("softmax", name="softmax")(self._model.layers[layer_index].output)
self._model = Model(inputs=self._model.input, outputs=[softmax])