#!/usr/bin python3 """ Settings manager for Keras Backend """ import logging import numpy as np import tensorflow as tf from lib.utils import get_backend if get_backend() == "amd": from keras.layers import Activation from keras.models import load_model as k_load_model, Model else: # Ignore linting errors from Tensorflow's thoroughly broken import system from tensorflow.keras.layers import Activation # noqa pylint:disable=no-name-in-module,import-error from tensorflow.keras.models import load_model as k_load_model, Model # noqa pylint:disable=no-name-in-module,import-error logger = logging.getLogger(__name__) # pylint:disable=invalid-name class KSession(): """ Handles the settings of backend sessions for inference models. This class acts as a wrapper for various :class:`keras.Model()` functions, ensuring that actions performed on a model are handled consistently and can be performed in parallel in separate threads. This is an early implementation of this class, and should be expanded out over time with relevant `AMD`, `CPU` and `NVIDIA` backend methods. Notes ----- The documentation refers to :mod:`keras`. This is a pseudonym for either :mod:`keras` or :mod:`tensorflow.keras` depending on the backend in use. Parameters ---------- name: str The name of the model that is to be loaded model_path: str The path to the keras model file model_kwargs: dict, optional Any kwargs that need to be passed to :func:`keras.models.load_models()`. Default: ``None`` allow_growth: bool, optional Enable the Tensorflow GPU allow_growth configuration option. This option prevents Tensorflow from allocating all of the GPU VRAM, but can lead to higher fragmentation and slower performance. Default: ``False`` exclude_gpus: list, optional A list of indices correlating to connected GPUs that Tensorflow should not use. Pass ``None`` to not exclude any GPUs. Default: ``None`` """ def __init__(self, name, model_path, model_kwargs=None, allow_growth=False, exclude_gpus=None): logger.trace("Initializing: %s (name: %s, model_path: %s, model_kwargs: %s, " "allow_growth: %s, exclude_gpus: %s)", self.__class__.__name__, name, model_path, model_kwargs, allow_growth, exclude_gpus) self._name = name self._backend = get_backend() self._set_session(allow_growth, exclude_gpus) self._model_path = model_path self._model_kwargs = {} if not model_kwargs else model_kwargs self._model = None logger.trace("Initialized: %s", self.__class__.__name__,) def predict(self, feed, batch_size=None): """ Get predictions from the model. This method is a wrapper for :func:`keras.predict()` function. For Tensorflow backends this is a straight call to the predict function. For PlaidML backends, this attempts to optimize the inference batch sizes to reduce the number of kernels that need to be compiled. Parameters ---------- feed: numpy.ndarray or list The feed to be provided to the model as input. This should be a :class:`numpy.ndarray` for single inputs or a `list` of :class:`numpy.ndarray` objects for multiple inputs. """ if self._backend == "amd" and batch_size is not None: return self._amd_predict_with_optimized_batchsizes(feed, batch_size) return self._model.predict(feed, batch_size=batch_size) def _amd_predict_with_optimized_batchsizes(self, feed, batch_size): """ Minimizes the amount of kernels to be compiled when using the ``amd`` backend with varying batch sizes while trying to keep the batchsize as high as possible. Parameters ---------- feed: numpy.ndarray or list The feed to be provided to the model as input. This should be a ``numpy.ndarray`` for single inputs or a ``list`` of ``numpy.ndarray`` objects for multiple inputs. batch_size: int The upper batchsize to use. """ if isinstance(feed, np.ndarray): feed = [feed] items = feed[0].shape[0] done_items = 0 results = [] while done_items < items: if batch_size < 4: # Not much difference in BS < 4 batch_size = 1 batch_items = ((items - done_items) // batch_size) * batch_size if batch_items: pred_data = [x[done_items:done_items + batch_items] for x in feed] pred = self._model.predict(pred_data, batch_size=batch_size) done_items += batch_items results.append(pred) batch_size //= 2 if isinstance(results[0], np.ndarray): return np.concatenate(results) return [np.concatenate(x) for x in zip(*results)] def _set_session(self, allow_growth, exclude_gpus): """ Sets the backend session options. For AMD backend this does nothing. For CPU backends, this hides any GPUs from Tensorflow. For Nvidia backends, this hides any GPUs that Tensorflow should not use and applies any allow growth settings Parameters ---------- allow_growth: bool, optional Enable the Tensorflow GPU allow_growth configuration option. This option prevents Tensorflow from allocating all of the GPU VRAM, but can lead to higher fragmentation and slower performance. Default: False exclude_gpus: list, optional A list of indices correlating to connected GPUs that Tensorflow should not use. Pass ``None`` to not exclude any GPUs. Default: ``None`` """ if self._backend == "amd": return if self._backend == "cpu": logger.verbose("Hiding GPUs from Tensorflow") tf.config.set_visible_devices([], "GPU") return gpus = tf.config.list_physical_devices('GPU') if exclude_gpus: gpus = [gpu for idx, gpu in enumerate(gpus) if idx not in exclude_gpus] logger.debug("Filtering devices to: %s", gpus) tf.config.set_visible_devices(gpus, "GPU") if allow_growth: for gpu in gpus: logger.info("Setting allow growth for GPU: %s", gpu) tf.config.experimental.set_memory_growth(gpu, True) def load_model(self): """ Loads a model. This method is a wrapper for :func:`keras.models.load_model()`. Loads a model and its weights from :attr:`model_path` defined during initialization of this class. Any additional ``kwargs`` to be passed to :func:`keras.models.load_model()` should also be defined during initialization of the class. For Tensorflow backends, the `make_predict_function` method is called on the model to make it thread safe. """ logger.verbose("Initializing plugin model: %s", self._name) self._model = k_load_model(self._model_path, compile=False, **self._model_kwargs) if self._backend != "amd": self._model.make_predict_function() def define_model(self, function): """ Defines a model from the given function. This method acts as a wrapper for :class:`keras.models.Model()`. Parameters ---------- function: function A function that defines a :class:`keras.Model` and returns it's ``inputs`` and ``outputs``. The function that generates these results should be passed in, NOT the results themselves, as the function needs to be executed within the correct context. """ self._model = Model(*function()) def load_model_weights(self): """ Load model weights for a defined model inside the correct session. This method is a wrapper for :class:`keras.load_weights()`. Once a model has been defined in :func:`define_model()` this method can be called to load its weights from the :attr:`model_path` defined during initialization of this class. For Tensorflow backends, the `make_predict_function` method is called on the model to make it thread safe. """ logger.verbose("Initializing plugin model: %s", self._name) self._model.load_weights(self._model_path) if self._backend != "amd": self._model.make_predict_function() def append_softmax_activation(self, layer_index=-1): """ Append a softmax activation layer to a model Occasionally a softmax activation layer needs to be added to a model's output. This is a convenience function to append this layer to the loaded model. Parameters ---------- layer_index: int, optional The layer index of the model to select the output from to use as an input to the softmax activation layer. Default: `-1` (The final layer of the model) """ logger.debug("Appending Softmax Activation to model: (layer_index: %s)", layer_index) softmax = Activation("softmax", name="softmax")(self._model.layers[layer_index].output) self._model = Model(inputs=self._model.input, outputs=[softmax])