1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-08 20:13:52 -04:00
Commit graph

11 commits

Author SHA1 Message Date
torzdf
cd00859c40
model_refactor (#571) (#572)
* model_refactor (#571)

* original model to new structure

* IAE model to new structure

* OriginalHiRes to new structure

* Fix trainer for different resolutions

* Initial config implementation

* Configparse library added

* improved training data loader

* dfaker model working

* Add logging to training functions

* Non blocking input for cli training

* Add error handling to threads. Add non-mp queues to queue_handler

* Improved Model Building and NNMeta

* refactor lib/models

* training refactor. DFL H128 model Implementation

* Dfaker - use hashes

* Move timelapse. Remove perceptual loss arg

* Update INSTALL.md. Add logger formatting. Update Dfaker training

* DFL h128 partially ported

* Add mask to dfaker (#573)

* Remove old models. Add mask to dfaker

* dfl mask. Make masks selectable in config (#575)

* DFL H128 Mask. Mask type selectable in config.

* remove gan_v2_2

* Creating Input Size config for models

Creating Input Size config for models

Will be used downstream in converters.

Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes)

* Add mask loss options to config

* MTCNN options to config.ini. Remove GAN config. Update USAGE.md

* Add sliders for numerical values in GUI

* Add config plugins menu to gui. Validate config

* Only backup model if loss has dropped. Get training working again

* bugfixes

* Standardise loss printing

* GUI idle cpu fixes. Graph loss fix.

* mutli-gpu logging bugfix

* Merge branch 'staging' into train_refactor

* backup state file

* Crash protection: Only backup if both total losses have dropped

* Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes)

* Load and save model structure with weights

* Slight code update

* Improve config loader. Add subpixel opt to all models. Config to state

* Show samples... wrong input

* Remove AE topology. Add input/output shapes to State

* Port original_villain (birb/VillainGuy) model to faceswap

* Add plugin info to GUI config pages

* Load input shape from state. IAE Config options.

* Fix transform_kwargs.
Coverage to ratio.
Bugfix mask detection

* Suppress keras userwarnings.
Automate zoom.
Coverage_ratio to model def.

* Consolidation of converters & refactor (#574)

* Consolidation of converters & refactor

Initial Upload of alpha

Items
- consolidate convert_mased & convert_adjust into one converter
-add average color adjust to convert_masked
-allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size
-allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size
-eliminate redundant type conversions to avoid multiple round-off errors
-refactor loops for vectorization/speed
-reorganize for clarity & style changes

TODO
- bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now
- issues with mask border giving black ring at zero erosion .. investigate
- remove GAN ??
- test enlargment factors of umeyama standard face .. match to coverage factor
- make enlargment factor a model parameter
- remove convert_adjusted and referencing code when finished

* Update Convert_Masked.py

default blur size of 2 to match original...
description of enlargement tests
breakout matrxi scaling into def

* Enlargment scale as a cli parameter

* Update cli.py

* dynamic interpolation algorithm

Compute x & y scale factors from the affine matrix on the fly by QR decomp.
Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image

* input size
input size from config

* fix issues with <1.0 erosion

* Update convert.py

* Update Convert_Adjust.py

more work on the way to merginf

* Clean up help note on sharpen

* cleanup seamless

* Delete Convert_Adjust.py

* Update umeyama.py

* Update training_data.py

* swapping

* segmentation stub

* changes to convert.str

* Update masked.py

* Backwards compatibility fix for models
Get converter running

* Convert:
Move masks to class.
bugfix blur_size
some linting

* mask fix

* convert fixes

- missing facehull_rect re-added
- coverage to %
- corrected coverage logic
- cleanup of gui option ordering

* Update cli.py

* default for blur

* Update masked.py

* added preliminary low_mem version of OriginalHighRes model plugin

* Code cleanup, minor fixes

* Update masked.py

* Update masked.py

* Add dfl mask to convert

* histogram fix & seamless location

* update

* revert

* bugfix: Load actual configuration in gui

* Standardize nn_blocks

* Update cli.py

* Minor code amends

* Fix Original HiRes model

* Add masks to preview output for mask trainers
refactor trainer.__base.py

* Masked trainers converter support

* convert bugfix

* Bugfix: Converter for masked (dfl/dfaker) trainers

* Additional Losses (#592)

* initial upload

* Delete blur.py

* default initializer = He instead of Glorot (#588)

* Allow kernel_initializer to be overridable

* Add ICNR Initializer option for upscale on all models.

* Hopefully fixes RSoDs with original-highres model plugin

* remove debug line

* Original-HighRes model plugin Red Screen of Death fix, take #2

* Move global options to _base. Rename Villain model

* clipnorm and res block biases

* scale the end of res block

* res block

* dfaker pre-activation res

* OHRES pre-activation

* villain pre-activation

* tabs/space in nn_blocks

* fix for histogram with mask all set to zero

* fix to prevent two networks with same name

* GUI: Wider tooltips. Improve TQDM capture

* Fix regex bug

* Convert padding=48 to ratio of image size

* Add size option to alignments tool extract

* Pass through training image size to convert from model

* Convert: Pull training coverage from model

* convert: coverage, blur and erode to percent

* simplify matrix scaling

* ordering of sliders in train

* Add matrix scaling to utils. Use interpolation in lib.aligner transform

* masked.py Import get_matrix_scaling from utils

* fix circular import

* Update masked.py

* quick fix for matrix scaling

* testing thus for now

* tqdm regex capture bugfix

* Minor ammends

* blur size cleanup

* Remove coverage option from convert (Now cascades from model)

* Implement convert for all model types

* Add mask option and coverage option to all existing models

* bugfix for model loading on convert

* debug print removal

* Bugfix for masks in dfl_h128 and iae

* Update preview display. Add preview scaling to cli

* mask notes

* Delete training_data_v2.py

errant file

* training data variables

* Fix timelapse function

* Add new config items to state file for legacy purposes

* Slight GUI tweak

* Raise exception if problem with loaded model

* Add Tensorboard support (Logs stored in model directory)

* ICNR fix

* loss bugfix

* convert bugfix

* Move ini files to config folder. Make TensorBoard optional

* Fix training data for unbalanced inputs/outputs

* Fix config "none" test

* Keep helptext in .ini files when saving config from GUI

* Remove frame_dims from alignments

* Add no-flip and warp-to-landmarks cli options

* Revert OHR to RC4_fix version

* Fix lowmem mode on OHR model

* padding to variable

* Save models in parallel threads

* Speed-up of res_block stability

* Automated Reflection Padding

* Reflect Padding as a training option

Includes auto-calculation of proper padding shapes, input_shapes, output_shapes

Flag included in config now

* rest of reflect padding

* Move TB logging to cli. Session info to state file

* Add session iterations to state file

* Add recent files to menu. GUI code tidy up

* [GUI] Fix recent file list update issue

* Add correct loss names to TensorBoard logs

* Update live graph to use TensorBoard and remove animation

* Fix analysis tab. GUI optimizations

* Analysis Graph popup to Tensorboard Logs

* [GUI] Bug fix for graphing for models with hypens in name

* [GUI] Correctly split loss to tabs during training

* [GUI] Add loss type selection to analysis graph

* Fix store command name in recent files. Switch to correct tab on open

* [GUI] Disable training graph when 'no-logs' is selected

* Fix graphing race condition

* rename original_hires model to unbalanced
2019-02-09 18:35:12 +00:00
torzdf
ca63242996
Extraction - Speed improvements (#522) (#523)
* Extraction - Speed improvements (#522)

* Initial Plugin restructure

* Detectors to plugins. Detector speed improvements

* Re-implement dlib aligner, remove models, FAN to TF. Parallel processing

* Update manual, update convert, implement parallel/serial switching

* linting + fix cuda check (setup.py). requirements update keras 2.2.4

* Add extract size option. Fix dlib hog init

* GUI: Increase tooltip width

* Update alignment tool to support new DetectedFace

* Add skip existing faces option

* Fix sort tool to new plugin structure

* remove old align plugin

* fix convert -skip faces bug

* Fix convert skipping no faces frames

* Convert - draw onto transparent layer

* Fix blur threshold bug

* fix skip_faces convert bug

* Fix training
2018-10-27 10:12:08 +01:00
Tim van den Essen
6d0d2f061f Add timelapse functionality (#512)
* add new cli options

* add timelapse script

* add batch size on image generation

* fix circular dependency

* add attribute check

* refactor to 3 parameters

* fix some typos

* do not shuffle the set

* default to models folder when no timelapse output supplied

* almost forgot this
2018-10-25 17:46:24 +01:00
Othniel Cundangan
810bd0bce7
Update GAN64 to v2 (#217)
* Clearer requirements for each platform

* Refactoring of old plugins (Model_Original + Extract_Align) + Cleanups

* Adding GAN128

* Update GAN to v2

* Create instance_normalization.py

* Fix decoder output

* Revert "Fix decoder output"

This reverts commit 3a8ecb8957.

* Fix convert

* Enable all options except perceptual_loss by default

* Disable instance norm

* Update Model.py

* Update Trainer.py

* Match GAN128 to shaoanlu's latest v2

* Add first_order to GAN128

* Disable `use_perceptual_loss`

* Fix call to `self.first_order`

* Switch to average loss in output

* Constrain average to last 100 iterations

* Fix math, constrain average to intervals of 100

* Fix math averaging again

* Remove math and simplify this damn averagin

* Add gan128 conversion

* Update convert.py

* Use non-warped images in masked preview

* Add K.set_learning_phase(1) to gan64

* Add K.set_learning_phase(1) to gan128

* Add missing keras import

* Use non-warped images in masked preview for gan128

* Exclude deleted faces from conversion

* --input-aligned-dir defaults to "{input_dir}/aligned"

* Simplify map operation

* port 'face_alignment' from PyTorch to Keras. It works x2 faster, but initialization takes 20secs.

2DFAN-4.h5 and mmod_human_face_detector.dat included in lib\FaceLandmarksExtractor

fixed dlib vs tensorflow conflict: dlib must do op first, then load keras model, otherwise CUDA OOM error

if face location not found by CNN, its try to find by HOG.

removed this:
-        if face.landmarks == None:
-            print("Warning! landmarks not found. Switching to crop!")
-            return cv2.resize(face.image, (size, size))
because DetectedFace always has landmarks

* Enabled masked converter for GAN models

* Histogram matching, cli option for perceptual loss

* Fix init() positional args error

* Add backwards compatibility for aligned filenames

* Fix masked converter

* Remove GAN converters
2018-03-09 19:43:24 -05:00
Leijurv
20753a64b7 print out which image caused error (#147) 2018-02-08 11:14:11 +01:00
Clorr
b3ae6130ed
Misc updates on master before GAN. Added multithreading + mmod face detector (#109)
* Preparing GAN plugin

* Adding multithreading for extract

* Adding support for mmod human face detector

* Adding face filter argument

* Added process number argument to multiprocessing extractor.

Fixed progressbar for multiprocessing.

* Added tiff as image type.
compression artefacts hurt my feelings.

* Cleanup
2018-02-07 13:42:19 +01:00
Clorr
34945cfcd7
Adding models as plugins + Face filtering (#53) + #39 + #43 + #44 + #49 (#61)
* Making Models as plugins

* Do not reload model on each image #39 + Adding FaceFilter #53

* Adding @lukaville PR for #43 and #44 (possibly)

* Training done in a separate thread

* Better log for plugin load

* Adding a prefetch to train.py #49
(Note that we prefetch 2 batches of images, due to the queue behavior)
+ More compact logging with verbose info included

* correction of DirectoryProcessor signature

* adding missing import

* Convert with parallel preprocessing of files

* Added coverage var for trainer

Added a var with comment. Feel free to add it as argument

* corrections

* Modifying preview and normalization of image + correction

* Cleanup
2018-01-31 18:56:44 +01:00
Clorr
3e2976ab03 Adding plugins 2018-01-03 10:33:39 +01:00
Hidde Jansen
a06d83abb7
PEP8 (#23) 2017-12-25 02:29:40 +01:00
Hidde Jansen
d0c02a2ba8
PEP8 / Codestyle (#11) 2017-12-20 21:27:14 +01:00
Colin LORRAIN
845a6ae0c6 Creating lib folder 2017-12-19 12:57:56 +01:00
Renamed from training_data.py (Browse further)