mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-09 04:36:50 -04:00
* Preparing GAN plugin * Adding multithreading for extract * Adding support for mmod human face detector * Adding face filter argument * Added process number argument to multiprocessing extractor. Fixed progressbar for multiprocessing. * Added tiff as image type. compression artefacts hurt my feelings. * Cleanup
98 lines
3.9 KiB
Python
98 lines
3.9 KiB
Python
import cv2
|
|
import numpy
|
|
from random import shuffle
|
|
|
|
from .utils import BackgroundGenerator
|
|
from .umeyama import umeyama
|
|
|
|
class TrainingDataGenerator():
|
|
def __init__(self, random_transform_args, coverage):
|
|
self.random_transform_args = random_transform_args
|
|
self.coverage = coverage
|
|
|
|
def minibatchAB(self, images, batchsize):
|
|
batch = BackgroundGenerator(self.minibatch(images, batchsize), 1)
|
|
for ep1, warped_img, target_img in batch.iterator():
|
|
yield ep1, warped_img, target_img
|
|
|
|
# A generator function that yields epoch, batchsize of warped_img and batchsize of target_img
|
|
def minibatch(self, data, batchsize):
|
|
length = len(data)
|
|
assert length >= batchsize, "Number of images is lower than batch-size (Note that too few images may lead to bad training). # images: {}, batch-size: {}".format(length, batchsize)
|
|
epoch = i = 0
|
|
shuffle(data)
|
|
while True:
|
|
size = batchsize
|
|
if i+size > length:
|
|
shuffle(data)
|
|
i = 0
|
|
epoch+=1
|
|
rtn = numpy.float32([self.read_image(img) for img in data[i:i+size]])
|
|
i+=size
|
|
yield epoch, rtn[:,0,:,:,:], rtn[:,1,:,:,:]
|
|
|
|
def color_adjust(self, img):
|
|
return img / 255.0
|
|
|
|
def read_image(self, fn):
|
|
image = self.color_adjust(cv2.imread(fn))
|
|
image = cv2.resize(image, (256,256))
|
|
image = self.random_transform( image, **self.random_transform_args )
|
|
warped_img, target_img = self.random_warp( image, self.coverage )
|
|
|
|
return warped_img, target_img
|
|
|
|
def random_transform(self, image, rotation_range, zoom_range, shift_range, random_flip):
|
|
h, w = image.shape[0:2]
|
|
rotation = numpy.random.uniform(-rotation_range, rotation_range)
|
|
scale = numpy.random.uniform(1 - zoom_range, 1 + zoom_range)
|
|
tx = numpy.random.uniform(-shift_range, shift_range) * w
|
|
ty = numpy.random.uniform(-shift_range, shift_range) * h
|
|
mat = cv2.getRotationMatrix2D((w // 2, h // 2), rotation, scale)
|
|
mat[:, 2] += (tx, ty)
|
|
result = cv2.warpAffine(
|
|
image, mat, (w, h), borderMode=cv2.BORDER_REPLICATE)
|
|
if numpy.random.random() < random_flip:
|
|
result = result[:, ::-1]
|
|
return result
|
|
|
|
# get pair of random warped images from aligned face image
|
|
def random_warp(self, image, coverage):
|
|
assert image.shape == (256, 256, 3)
|
|
range_ = numpy.linspace(128 - coverage//2, 128 + coverage//2, 5)
|
|
mapx = numpy.broadcast_to(range_, (5, 5))
|
|
mapy = mapx.T
|
|
|
|
mapx = mapx + numpy.random.normal(size=(5, 5), scale=5)
|
|
mapy = mapy + numpy.random.normal(size=(5, 5), scale=5)
|
|
|
|
interp_mapx = cv2.resize(mapx, (80, 80))[8:72, 8:72].astype('float32')
|
|
interp_mapy = cv2.resize(mapy, (80, 80))[8:72, 8:72].astype('float32')
|
|
|
|
warped_image = cv2.remap(image, interp_mapx, interp_mapy, cv2.INTER_LINEAR)
|
|
|
|
src_points = numpy.stack([mapx.ravel(), mapy.ravel()], axis=-1)
|
|
dst_points = numpy.mgrid[0:65:16, 0:65:16].T.reshape(-1, 2)
|
|
mat = umeyama(src_points, dst_points, True)[0:2]
|
|
|
|
target_image = cv2.warpAffine(image, mat, (64, 64))
|
|
|
|
return warped_image, target_image
|
|
|
|
def stack_images(images):
|
|
def get_transpose_axes(n):
|
|
if n % 2 == 0:
|
|
y_axes = list(range(1, n - 1, 2))
|
|
x_axes = list(range(0, n - 1, 2))
|
|
else:
|
|
y_axes = list(range(0, n - 1, 2))
|
|
x_axes = list(range(1, n - 1, 2))
|
|
return y_axes, x_axes, [n - 1]
|
|
|
|
images_shape = numpy.array(images.shape)
|
|
new_axes = get_transpose_axes(len(images_shape))
|
|
new_shape = [numpy.prod(images_shape[x]) for x in new_axes]
|
|
return numpy.transpose(
|
|
images,
|
|
axes=numpy.concatenate(new_axes)
|
|
).reshape(new_shape)
|