1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/lib/training_data.py
Clorr b3ae6130ed
Misc updates on master before GAN. Added multithreading + mmod face detector (#109)
* Preparing GAN plugin

* Adding multithreading for extract

* Adding support for mmod human face detector

* Adding face filter argument

* Added process number argument to multiprocessing extractor.

Fixed progressbar for multiprocessing.

* Added tiff as image type.
compression artefacts hurt my feelings.

* Cleanup
2018-02-07 13:42:19 +01:00

98 lines
3.9 KiB
Python

import cv2
import numpy
from random import shuffle
from .utils import BackgroundGenerator
from .umeyama import umeyama
class TrainingDataGenerator():
def __init__(self, random_transform_args, coverage):
self.random_transform_args = random_transform_args
self.coverage = coverage
def minibatchAB(self, images, batchsize):
batch = BackgroundGenerator(self.minibatch(images, batchsize), 1)
for ep1, warped_img, target_img in batch.iterator():
yield ep1, warped_img, target_img
# A generator function that yields epoch, batchsize of warped_img and batchsize of target_img
def minibatch(self, data, batchsize):
length = len(data)
assert length >= batchsize, "Number of images is lower than batch-size (Note that too few images may lead to bad training). # images: {}, batch-size: {}".format(length, batchsize)
epoch = i = 0
shuffle(data)
while True:
size = batchsize
if i+size > length:
shuffle(data)
i = 0
epoch+=1
rtn = numpy.float32([self.read_image(img) for img in data[i:i+size]])
i+=size
yield epoch, rtn[:,0,:,:,:], rtn[:,1,:,:,:]
def color_adjust(self, img):
return img / 255.0
def read_image(self, fn):
image = self.color_adjust(cv2.imread(fn))
image = cv2.resize(image, (256,256))
image = self.random_transform( image, **self.random_transform_args )
warped_img, target_img = self.random_warp( image, self.coverage )
return warped_img, target_img
def random_transform(self, image, rotation_range, zoom_range, shift_range, random_flip):
h, w = image.shape[0:2]
rotation = numpy.random.uniform(-rotation_range, rotation_range)
scale = numpy.random.uniform(1 - zoom_range, 1 + zoom_range)
tx = numpy.random.uniform(-shift_range, shift_range) * w
ty = numpy.random.uniform(-shift_range, shift_range) * h
mat = cv2.getRotationMatrix2D((w // 2, h // 2), rotation, scale)
mat[:, 2] += (tx, ty)
result = cv2.warpAffine(
image, mat, (w, h), borderMode=cv2.BORDER_REPLICATE)
if numpy.random.random() < random_flip:
result = result[:, ::-1]
return result
# get pair of random warped images from aligned face image
def random_warp(self, image, coverage):
assert image.shape == (256, 256, 3)
range_ = numpy.linspace(128 - coverage//2, 128 + coverage//2, 5)
mapx = numpy.broadcast_to(range_, (5, 5))
mapy = mapx.T
mapx = mapx + numpy.random.normal(size=(5, 5), scale=5)
mapy = mapy + numpy.random.normal(size=(5, 5), scale=5)
interp_mapx = cv2.resize(mapx, (80, 80))[8:72, 8:72].astype('float32')
interp_mapy = cv2.resize(mapy, (80, 80))[8:72, 8:72].astype('float32')
warped_image = cv2.remap(image, interp_mapx, interp_mapy, cv2.INTER_LINEAR)
src_points = numpy.stack([mapx.ravel(), mapy.ravel()], axis=-1)
dst_points = numpy.mgrid[0:65:16, 0:65:16].T.reshape(-1, 2)
mat = umeyama(src_points, dst_points, True)[0:2]
target_image = cv2.warpAffine(image, mat, (64, 64))
return warped_image, target_image
def stack_images(images):
def get_transpose_axes(n):
if n % 2 == 0:
y_axes = list(range(1, n - 1, 2))
x_axes = list(range(0, n - 1, 2))
else:
y_axes = list(range(0, n - 1, 2))
x_axes = list(range(1, n - 1, 2))
return y_axes, x_axes, [n - 1]
images_shape = numpy.array(images.shape)
new_axes = get_transpose_axes(len(images_shape))
new_shape = [numpy.prod(images_shape[x]) for x in new_axes]
return numpy.transpose(
images,
axes=numpy.concatenate(new_axes)
).reshape(new_shape)