AutoGPTQ/examples/README.md
2023-05-30 07:47:10 +08:00

76 lines
No EOL
3.3 KiB
Markdown

# Examples
To run example scripts in this folder, one must first install `auto_gptq` as described in [this](../README.md)
## Quantization
> Commands in this chapter should be run under `quantization` folder.
### Basic Usage
To Execute `basic_usage.py`, using command like this:
```shell
python basic_usage.py
```
This script also showcases how to download/upload quantized model from/to 🤗 Hub, to enable those features, you can uncomment the commented codes.
To Execute `basic_usage_with_wikitext2.py`, using command like this:
```shell
python basic_usage_with_wikitext2.py
```
> Note: There is about 0.6 ppl degrade on opt-125m model using AutoGPTQ, compared to GPTQ-for-LLaMa.
### Quantize with Alpaca
To Execute `quant_with_alpaca.py`, using command like this:
```shell
python quant_with_alpaca.py --pretrained_model_dir "facebook/opt-125m" --per_gpu_max_memory 4 --quant_batch_size 16
```
Use `--help` flag to see detailed descriptions for more command arguments.
The alpaca dataset used in here is a cleaned version provided by **gururise** in [AlpacaDataCleaned](https://github.com/gururise/AlpacaDataCleaned)
## Evaluation
> Commands in this chapter should be run under `evaluation` folder.
### Language Modeling Task
`run_language_modeling_task.py` script gives an example of using `LanguageModelingTask` to evaluate model's performance on language modeling task before and after quantization using `tatsu-lab/alpaca` dataset.
To execute this script, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python run_language_modeling_task.py --base_model_dir PATH/TO/BASE/MODEL/DIR --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR
```
Use `--help` flag to see detailed descriptions for more command arguments.
### Sequence Classification Task
`run_sequence_classification_task.py` script gives an example of using `SequenceClassificationTask` to evaluate model's performance on sequence classification task before and after quantization using `cardiffnlp/tweet_sentiment_multilingual` dataset.
To execute this script, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python run_sequence_classification_task.py --base_model_dir PATH/TO/BASE/MODEL/DIR --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR
```
Use `--help` flag to see detailed descriptions for more command arguments.
### Text Summarization Task
`run_text_summarization_task.py` script gives an example of using `TextSummarizationTask` to evaluate model's performance on text summarization task before and after quantization using `samsum` dataset.
To execute this script, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python run_text_summarization_task.py --base_model_dir PATH/TO/BASE/MODEL/DIR --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR
```
Use `--help` flag to see detailed descriptions for more command arguments.
## Benchmark
> Commands in this chapter should be run under `benchmark` folder.
### Generation Speed
`generation_speed.py` scripts gives an example of how to benchmark the generations speed of pretrained and quantized models that `auto_gptq` supports, this benchmarks model generation speed in tokens/s metric.
To eexcute this script, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python generation_speed.py --model_name_pr_path PATH/TO/MODEL/DIR
```
Use `--help` flag to see detailed descriptions for more command arguments.