AutoGPTQ/README.md
潘其威(William) 393a2fbac2
Update README.md
2023-05-12 13:47:30 +08:00

244 lines
9.5 KiB
Markdown

<h1 align="center">AutoGPTQ</h1>
<p align="center">An easy-to-use LLMs quantization package with user-friendly apis, based on GPTQ algorithm.</p>
<p align="center">
<a href="https://github.com/PanQiWei/AutoGPTQ/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/PanQiWei/AutoGPTQ.svg">
</a>
<a href="https://pypi.org/project/auto-gptq/">
<img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dd/auto-gptq">
</a>
</p>
<h4 align="center">
<p>
<b>English</b> |
<a href="https://github.com/PanQiWei/AutoGPTQ/blob/main/README_zh.md">中文</a>
<p>
</h4>
## News or Update
- 2023-05-12 - (In Progress) - `peft` + `auto-gptq` + multi-modal data = easily fine tune LLMs to gain multi-modal instruction following ability with low resources, stay tune!
- 2023-05-04 - (Update) - Support using faster cuda kernel when `not desc_act or group_size == -1`.
- 2023-04-29 - (Update) - Support loading quantized model from arbitrary quantize_config and model_basename.
- 2023-04-28 - (Update) - Support CPU offload and quantize/inference on multiple devices, support `gpt2` type models.
*For more histories please turn to [here](docs/NEWS_OR_UPDATE.md)*
## Installation
### Quick Installation
You can install the latest stable release of AutoGPTQ from pip:
```shell
pip install auto-gptq
```
#### disable cuda extensions
By default, cuda extensions will be installed when `torch` and `cuda` is already installed in your machine, if you don't want to use them, using:
```shell
BUILD_CUDA_EXT=0 pip install auto-gptq
```
And to make sure `quant_cuda` is not ever in your virtual environment, run:
```shell
pip uninstall quant_cuda -y
```
#### to support LLaMa model
For some people want to try LLaMa and whose `transformers` version not meet the newest one that supports it, using:
```shell
pip install auto-gptq[llama]
```
#### to support triton speedup
To integrate with `triton`, using:
> warning: currently triton only supports linux; 3-bit quantization is not supported when using triton
```shell
pip install auto-gptq[triton]
```
### Install from source
Clone the source code:
```shell
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
```
Then, install from source:
```shell
pip install .
```
Like quick installation, you can also set `BUILD_CUDA_EXT=0` to disable pytorch extension building.
Use `.[llama]` if you want to try LLaMa model.
Use `.[triton]` if you want to integrate with triton and it's available on your operating system.
## Supported Models
Currently, `auto_gptq` supports: `bloom`, `gpt2`, `gpt_neox`, `gptj`, `llama`, `moss` and `opt`; more Transformer models will come soon!
## Supported Evaluation Tasks
Currently, `auto_gptq` supports: `LanguageModelingTask`, `SequenceClassificationTask` and `TextSummarizationTask`; more Tasks will come soon!
## Usage
**Here are [tutorials](docs/tutorial)(continue updating...) for using `auto-gptq`, it's highly recommended for newcomers to read them first before trying example scripts.**
### Basic
> warning: this is just a show case of the usage of basic apis in AutoGPTQ, which uses only one sample to quantize a much small model, thus may not performs as well as expected in LLMs.
Below is an example for the simplest use of `auto_gptq`:
```python
from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
pretrained_model_dir = "facebook/opt-125m"
quantized_model_dir = "opt-125m-4bit"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
examples = [
tokenizer(
"auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
)
]
quantize_config = BaseQuantizeConfig(
bits=4, # quantize model to 4-bit
group_size=128, # it is recommended to set the value to 128
)
# load un-quantized model, by default, the model will always be loaded into CPU memory
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
model.quantize(examples, use_triton=False)
# save quantized model
model.save_quantized(quantized_model_dir)
# save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True)
# load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False)
# inference with model.generate
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to("cuda:0"))[0]))
# or you can also use pipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
print(pipeline("auto-gptq is")[0]["generated_text"])
```
For more advanced features of model quantization, please reference to [this script](examples/quantization/quant_with_alpaca.py)
### Customize Model
Below is an example to extend `auto_gptq` to support `OPT` model, as you will see, it's very easy:
```python
from auto_gptq.modeling import BaseGPTQForCausalLM
class OPTGPTQForCausalLM(BaseGPTQForCausalLM):
# chained attribute name of transformer layer block
layers_block_name = "model.decoder.layers"
# chained attribute names of other nn modules that in the same level as the transformer layer block
outside_layer_modules = [
"model.decoder.embed_tokens", "model.decoder.embed_positions", "model.decoder.project_out",
"model.decoder.project_in", "model.decoder.final_layer_norm"
]
# chained attribute names of linear layers in transformer layer module
# normally, there are four sub lists, for each one the modules in it can be seen as one operation,
# and the order should be the order when they are truly executed, in this case (and usually in most cases),
# they are: attention q_k_v projection, attention output projection, MLP project input, MLP project output
inside_layer_modules = [
["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"],
["self_attn.out_proj"],
["fc1"],
["fc2"]
]
```
After this, you can use `OPTGPTQForCausalLM.from_pretrained` and other methods as shown in Basic.
### Evaluation on Downstream Tasks
You can use tasks defined in `auto_gptq.eval_tasks` to evaluate model's performance on specific down-stream task before and after quantization.
The predefined tasks support all causal-language-models implemented in [🤗 transformers](https://github.com/huggingface/transformers) and in this project.
Below is an example to evaluate `EleutherAI/gpt-j-6b` on sequence-classification task using `cardiffnlp/tweet_sentiment_multilingual` dataset:
```python
from functools import partial
import datasets
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from auto_gptq.eval_tasks import SequenceClassificationTask
MODEL = "EleutherAI/gpt-j-6b"
DATASET = "cardiffnlp/tweet_sentiment_multilingual"
TEMPLATE = "Question:What's the sentiment of the given text? Choices are {labels}.\nText: {text}\nAnswer:"
ID2LABEL = {
0: "negative",
1: "neutral",
2: "positive"
}
LABELS = list(ID2LABEL.values())
def ds_refactor_fn(samples):
text_data = samples["text"]
label_data = samples["label"]
new_samples = {"prompt": [], "label": []}
for text, label in zip(text_data, label_data):
prompt = TEMPLATE.format(labels=LABELS, text=text)
new_samples["prompt"].append(prompt)
new_samples["label"].append(ID2LABEL[label])
return new_samples
# model = AutoModelForCausalLM.from_pretrained(MODEL).eval().half().to("cuda:0")
model = AutoGPTQForCausalLM.from_pretrained(MODEL, BaseQuantizeConfig())
tokenizer = AutoTokenizer.from_pretrained(MODEL)
task = SequenceClassificationTask(
model=model,
tokenizer=tokenizer,
classes=LABELS,
data_name_or_path=DATASET,
prompt_col_name="prompt",
label_col_name="label",
**{
"num_samples": 1000, # how many samples will be sampled to evaluation
"sample_max_len": 1024, # max tokens for each sample
"block_max_len": 2048, # max tokens for each data block
# function to load dataset, one must only accept data_name_or_path as input
# and return datasets.Dataset
"load_fn": partial(datasets.load_dataset, name="english"),
# function to preprocess dataset, which is used for datasets.Dataset.map,
# must return Dict[str, list] with only two keys: [prompt_col_name, label_col_name]
"preprocess_fn": ds_refactor_fn,
# truncate label when sample's length exceed sample_max_len
"truncate_prompt": False
}
)
# note that max_new_tokens will be automatically specified internally based on given classes
print(task.run())
# self-consistency
print(
task.run(
generation_config=GenerationConfig(
num_beams=3,
num_return_sequences=3,
do_sample=True
)
)
)
```
### More Examples
For more examples, please turn to [examples](examples/README.md)
## Acknowledgement
- Specially thanks **Elias Frantar**, **Saleh Ashkboos**, **Torsten Hoefler** and **Dan Alistarh** for proposing **GPTQ** algorithm and open source the [code](https://github.com/IST-DASLab/gptq).
- Specially thanks **qwopqwop200**, for code in this project that relevant to quantization are mainly referenced from [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda).