Compare commits

..

No commits in common. "main" and "v0.1.0" have entirely different histories.
main ... v0.1.0

108 changed files with 1067 additions and 17780 deletions

View file

@ -1,33 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: "[BUG]"
labels: bug
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**Hardware details**
Information about CPU and GPU, such as RAM, number, etc.
**Software version**
Version of relevant software such as operation system, cuda toolkit, python, auto-gptq, pytorch, transformers, accelerate, etc.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Additional context**
Add any other context about the problem here.

View file

@ -1,10 +0,0 @@
---
name: Custom issue template
about: Describe this issue template's purpose here.
title: ''
labels: ''
assignees: ''
---

View file

@ -1,20 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: "[FEATURE]"
labels: enhancement
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View file

@ -1,69 +0,0 @@
name: Build AutoGPTQ Wheels with CUDA
on: workflow_dispatch
jobs:
build_wheels:
if: ${{ github.repository_owner == 'PanQiWei' }}
name: Build wheels for ${{ matrix.os }} and Python ${{ matrix.python }} and CUDA ${{ matrix.cuda }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-20.04, windows-latest]
pyver: ["3.8", "3.9", "3.10", "3.11"]
cuda: ["11.7", "11.8"]
defaults:
run:
shell: pwsh
env:
CUDA_VERSION: ${{ matrix.cuda }}
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v3
with:
python-version: ${{ matrix.pyver }}
- name: Setup Miniconda
uses: conda-incubator/setup-miniconda@v2.2.0
with:
activate-environment: "build"
python-version: ${{ matrix.pyver }}
mamba-version: "*"
use-mamba: false
channels: conda-forge,defaults
channel-priority: true
add-pip-as-python-dependency: true
auto-activate-base: false
- name: Install Dependencies
run: |
conda install cuda-toolkit -c "nvidia/label/cuda-${env:CUDA_VERSION}.0"
conda install pytorch "pytorch-cuda=${env:CUDA_VERSION}" -c pytorch -c nvidia
python -m pip install --upgrade build setuptools wheel ninja
- name: Build Wheel
run: |
$env:CUDA_PATH = $env:CONDA_PREFIX
$env:CUDA_HOME = $env:CONDA_PREFIX
if ($IsLinux) {$env:LD_LIBRARY_PATH = $env:CONDA_PREFIX + '/lib:' + $env:LD_LIBRARY_PATH}
# TODO: remove this
if (!$IsLinux) {$env:INCLUDE_EXLLAMA_KERNELS = 0}
$env:TORCH_CUDA_ARCH_LIST = '6.0 6.1 7.0 7.5 8.0 8.6+PTX'
if ([decimal]$env:CUDA_VERSION -ge 11.8) { $env:TORCH_CUDA_ARCH_LIST = '6.0 6.1 7.0 7.5 8.0 8.6 8.9 9.0+PTX' }
python setup.py sdist bdist_wheel
- uses: actions/upload-artifact@v3
if: runner.os == 'Linux'
with:
name: 'linux-cuda-wheels'
path: ./dist/*.whl
- uses: actions/upload-artifact@v3
if: runner.os == 'Windows'
with:
name: 'windows-cuda-wheels'
path: ./dist/*.whl

View file

@ -1,74 +0,0 @@
name: Build AutoGPTQ Wheels for PyPI with CUDA
on: workflow_dispatch
jobs:
build_wheels:
if: ${{ github.repository_owner == 'PanQiWei' }}
name: Build wheels for ${{ matrix.os }} and Python ${{ matrix.python }} and CUDA 11.7
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-20.04, windows-latest]
pyver: ["3.8", "3.9", "3.10", "3.11"]
defaults:
run:
shell: pwsh
env:
CUDA_VERSION: "11.7"
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v3
with:
python-version: ${{ matrix.pyver }}
- name: Setup Miniconda
uses: conda-incubator/setup-miniconda@v2.2.0
with:
activate-environment: "build"
python-version: ${{ matrix.pyver }}
mamba-version: "*"
use-mamba: false
channels: conda-forge,defaults
channel-priority: true
add-pip-as-python-dependency: true
auto-activate-base: false
- name: Install Dependencies
run: |
conda install cuda-toolkit -c "nvidia/label/cuda-${env:CUDA_VERSION}.0"
conda install pytorch "pytorch-cuda=${env:CUDA_VERSION}" -c pytorch -c nvidia
python -m pip install --upgrade build setuptools wheel ninja
- name: Build Wheel
run: |
$env:CUDA_PATH = $env:CONDA_PREFIX
$env:CUDA_HOME = $env:CONDA_PREFIX
if ($IsLinux) {$env:LD_LIBRARY_PATH = $env:CONDA_PREFIX + '/lib:' + $env:LD_LIBRARY_PATH}
$env:TORCH_CUDA_ARCH_LIST = '6.0 6.1 7.0 7.5 8.0 8.6+PTX'
if ([decimal]$env:CUDA_VERSION -ge 11.8) { $env:TORCH_CUDA_ARCH_LIST = '6.0 6.1 7.0 7.5 8.0 8.6 8.9 9.0+PTX' }
$env:PYPI_RELEASE = "1"
echo "CUDA_PATH:"
echo $env:CUDA_PATH
echo "PYPI_RELEASE:"
echo $env:PYPI_RELEASE
python setup.py sdist bdist_wheel
- uses: actions/upload-artifact@v3
if: runner.os == 'Linux'
with:
name: 'linux-cuda-wheels'
path: ./dist/*.whl
- uses: actions/upload-artifact@v3
if: runner.os == 'Windows'
with:
name: 'windows-cuda-wheels'
path: ./dist/*.whl

View file

@ -1,103 +0,0 @@
name: Build AutoGPTQ Wheels with ROCm
on: workflow_dispatch
jobs:
build_wheels:
if: ${{ github.repository_owner == 'PanQiWei' }}
strategy:
matrix:
os: [ubuntu-20.04]
python: ["3.8", "3.9", "3.10", "3.11"]
rocm: ["5.4.2"] # , "5.5", "5.6"]
name: Build wheels for ${{ matrix.os }} and Python ${{ matrix.python }} and RoCm ${{ matrix.rocm }}
runs-on: ${{ matrix.os }}
defaults:
run:
shell: bash
steps:
- uses: actions/checkout@v3
- name: Free disk space
run: |
df -h
echo "Removing large packages"
sudo apt-get remove -y '^dotnet-.*'
sudo apt-get remove -y 'php.*'
sudo apt-get remove -y azure-cli google-cloud-sdk google-chrome-stable firefox powershell mono-devel
df -h
sudo apt-get autoremove -y >/dev/null 2>&1
sudo apt-get clean
sudo apt-get autoremove -y >/dev/null 2>&1
sudo apt-get autoclean -y >/dev/null 2>&1
df -h
echo "https://github.com/actions/virtual-environments/issues/709"
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
df -h
echo "remove big /usr/local"
sudo rm -rf "/usr/local/share/boost"
sudo rm -rf /usr/local/lib/android >/dev/null 2>&1
df -h
sudo rm -rf /usr/share/dotnet/sdk > /dev/null 2>&1
sudo rm -rf /usr/share/dotnet/shared > /dev/null 2>&1
sudo rm -rf /usr/share/swift > /dev/null 2>&1
df -h
- uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python }}
- name: Setup Miniconda
uses: conda-incubator/setup-miniconda@v2.2.0
with:
activate-environment: "build"
python-version: ${{ matrix.python }}
mamba-version: "*"
use-mamba: false
channels: conda-forge,defaults
channel-priority: true
add-pip-as-python-dependency: true
auto-activate-base: false
- name: Set up environment
run: |
echo "Using python:"
python --version
which python
if [[ "${{ matrix.rocm }}" == "5.4.2" ]]; then
export ROCM_DL_FILE=amdgpu-install_5.4.50402-1_all.deb
elif [[ "${{ matrix.rocm }}" == "5.5" ]]; then
export ROCM_DL_FILE=amdgpu-install_5.5.50500-1_all.deb
else
export ROCM_DL_FILE=amdgpu-install_5.6.50600-1_all.deb
fi
curl -O https://repo.radeon.com/amdgpu-install/${{ matrix.rocm }}/ubuntu/focal/$ROCM_DL_FILE
sudo dpkg -i $ROCM_DL_FILE
sudo DEBIAN_FRONTEND=noninteractive amdgpu-install --usecase=rocm --no-dkms --no-32 -y
- name: Install dependencies
run: |
sudo apt-get update
sudo apt-get install -y --no-install-recommends rocsparse-dev rocthrust-dev rocblas-dev hipblas-dev hipsparse-dev
python -m pip install --upgrade build setuptools wheel ninja
python -m pip install torch --index-url https://download.pytorch.org/whl/rocm${{ matrix.rocm }}
- name: Build wheels
run: |
echo "Using python for build:"
python --version
which python
ROCM_VERSION=${{ matrix.rocm }} python setup.py sdist bdist_wheel
- uses: actions/upload-artifact@v3
with:
name: 'linux-rocm-wheels'
path: ./dist/*.whl

160
.gitignore vendored
View file

@ -1,160 +0,0 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/

198
README.md
View file

@ -12,101 +12,84 @@
<p> <p>
<b>English</b> | <b>English</b> |
<a href="https://github.com/PanQiWei/AutoGPTQ/blob/main/README_zh.md">中文</a> <a href="https://github.com/PanQiWei/AutoGPTQ/blob/main/README_zh.md">中文</a>
</p> <p>
</h4> </h4>
## The path to v1.0.0
Hi, fellow community members, long time no see! I'm sorry that I haven't been able to update this project more frequently due to personal reasons during this period. The past few weeks have been huge in terms of my career plans. Not long ago, I officially bid farewell to the startup team that I joined for two years after graduation. I'm very grateful to the leaders and colleagues of the team for their trust and guidance, which enabled me to grow rapidly in two years; at the same time, I'm also really grateful to the team for allowing me to use the internal A100 GPU server cluster free of charge since the start of the AutoGPTQ project to complete various experiments and performance evaluations. (Of course, it can no longer be used in the future, so **it will mean a lot to me if there will be new hardware sponsorship!**) In the past two years, I have served as an AI engineer in this team, responsible for the LLM based dialogue system's architecture design and develop. We had successfully launched a product called gemsouls, but unfortunately it has ceased operations. Now, the team is about to launch a new product called [modelize](https://www.beta.modelize.ai/), which is **a LLM-native AI agent platform, where users can use multiple AI agents to build a highly automated team, allowing them to interact with each other in the workflow, collaborate to complete complex projects efficiently.**
Getting back to the topic, I'm very excited to see that in the past few months, research on optimizing the inference performance of LLMs has made tremendous progress. Now we can not only complete the inference of LLMs on high-end GPUs efficiently, but also on CPUs and even edge devices. A series of technological advancements make me eager to make more contributions to the open source community. Therefore, I will first use about four weeks to gradually update AutoGPTQ to the v1.0.0 official version. During this period, there will also be 2~3 minor versions are released to allow users to experience performance optimization and new features timely. In my vision, **by the time v1.0.0 is officially released, AutoGPTQ will be able to serve as an extendable and flexible quantization backend that supports all GPTQ-like methods and automatically quantize LLMs written by Pytorch**. I detailed the development plan in [this issue](https://github.com/PanQiWei/AutoGPTQ/issues/348), feel free to drop in there for discussion and give your suggestions!
## News or Update ## News or Update
- 2023-05-04 - (Update) - Support using faster cuda kernel when `not desc_act or group_size == -1`.
- 2023-08-23 - (News) - 🤗 Transformers, optimum and peft have integrated `auto-gptq`, so now running and training GPTQ models can be more available to everyone! See [this blog](https://huggingface.co/blog/gptq-integration) and it's resources for more details! - 2023-04-29 - (Update) - Support loading quantized model from arbitrary quantize_config and model_basename.
- 2023-08-21 - (News) - Team of Qwen officially released 4bit quantized version of Qwen-7B based on `auto-gptq`, and provided [a detailed benchmark results](https://huggingface.co/Qwen/Qwen-7B-Chat-Int4#%E9%87%8F%E5%8C%96-quantization) - 2023-04-28 - (Update) - Support CPU offload and quantize/inference on multiple devices, support `gpt2` type models.
- 2023-08-06 - (Update) - Support exllama's q4 CUDA kernel to have at least 1.3x speed up for int4 quantized models when doing inference.
- 2023-08-04 - (Update) - Support RoCm so that AMD GPU users can use auto-gptq with CUDA extensions.
- 2023-07-26 - (Update) - An elegant [PPL benchmark script](examples/benchmark/perplexity.py) to get results that can be fairly compared with other libraries such as `llama.cpp`.
- 2023-06-05 - (Update) - Integrate with 🤗 peft to use gptq quantized model to train adapters, support LoRA, AdaLoRA, AdaptionPrompt, etc.
- 2023-05-30 - (Update) - Support download/upload quantized model from/to 🤗 Hub.
*For more histories please turn to [here](docs/NEWS_OR_UPDATE.md)* *For more histories please turn to [here](docs/NEWS_OR_UPDATE.md)*
## Performance Comparison
### Inference Speed
> The result is generated using [this script](examples/benchmark/generation_speed.py), batch size of input is 1, decode strategy is beam search and enforce the model to generate 512 tokens, speed metric is tokens/s (the larger, the better).
>
> The quantized model is loaded using the setup that can gain the fastest inference speed.
| model | GPU | num_beams | fp16 | gptq-int4 |
|---------------|---------------|-----------|-------|-----------|
| llama-7b | 1xA100-40G | 1 | 18.87 | 25.53 |
| llama-7b | 1xA100-40G | 4 | 68.79 | 91.30 |
| moss-moon 16b | 1xA100-40G | 1 | 12.48 | 15.25 |
| moss-moon 16b | 1xA100-40G | 4 | OOM | 42.67 |
| moss-moon 16b | 2xA100-40G | 1 | 06.83 | 06.78 |
| moss-moon 16b | 2xA100-40G | 4 | 13.10 | 10.80 |
| gpt-j 6b | 1xRTX3060-12G | 1 | OOM | 29.55 |
| gpt-j 6b | 1xRTX3060-12G | 4 | OOM | 47.36 |
### Perplexity
For perplexity comparison, you can turn to [here](https://github.com/qwopqwop200/GPTQ-for-LLaMa#result) and [here](https://github.com/qwopqwop200/GPTQ-for-LLaMa#gptq-vs-bitsandbytes)
## Installation ## Installation
### Quick Installation ### Quick Installation
You can install the latest stable release of AutoGPTQ from pip with pre-built wheels compatible with PyTorch 2.0.1: You can install the latest stable release of AutoGPTQ from pip:
```shell
pip install auto-gptq
```
#### disable cuda extensions
By default, cuda extensions will be installed when `torch` and `cuda` is already installed in your machine, if you don't want to use them, using:
```shell
BUILD_CUDA_EXT=0 pip install auto-gptq
```
And to make sure `quant_cuda` is not ever in your virtual environment, run:
```shell
pip uninstall quant_cuda -y
```
#### to support LLaMa model
For some people want to try LLaMa and whose `transformers` version not meet the newest one that supports it, using:
```shell
pip install auto-gptq[llama]
```
#### to support triton speedup
To integrate with `triton`, using:
> warning: currently triton only supports linux; 3-bit quantization is not supported when using triton
* For CUDA 11.7: `pip install auto-gptq` ```shell
* For CUDA 11.8: `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/` pip install auto-gptq[triton]
* For RoCm 5.4.2: `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm542/` ```
**Warning:** These wheels are not expected to work on PyTorch nightly. Please install AutoGPTQ from source when using PyTorch nightly.
AutoGPTQ can be installed with the Triton dependency with `pip install auto-gptq[triton]` in order to be able to use the Triton backend (currently only supports linux, no 3-bits quantization).
### Install from source ### Install from source
Clone the source code: Clone the source code:
```shell ```shell
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
``` ```
Then, install from source: Then, install from source:
```shell ```shell
pip install -v . pip install .
``` ```
You can set `BUILD_CUDA_EXT=0` to disable pytorch extension building, but this is **strongly discouraged** as AutoGPTQ then falls back on a slow python implementation. Like quick installation, you can also set `BUILD_CUDA_EXT=0` to disable pytorch extension building.
To install from source for AMD GPUs supporting RoCm, please specify the `ROCM_VERSION` environment variable. The compilation can be speeded up by specifying the `PYTORCH_ROCM_ARCH` variable ([reference](https://github.com/pytorch/pytorch/blob/7b73b1e8a73a1777ebe8d2cd4487eb13da55b3ba/setup.py#L132)), for example `gfx90a` for MI200 series devices. Example: Use `.[llama]` if you want to try LLaMa model.
``` Use `.[triton]` if you want to integrate with triton and it's available on your operating system.
ROCM_VERSION=5.6 pip install -v .
```
For RoCm systems, the packages `rocsparse-dev`, `hipsparse-dev`, `rocthrust-dev`, `rocblas-dev` and `hipblas-dev` are required to build.
## Quick Tour ## Supported Models
Currently, `auto_gptq` supports: `bloom`, `gpt2`, `gpt_neox`, `gptj`, `llama`, `moss` and `opt`; more Transformer models will come soon!
### Quantization and Inference ## Supported Evaluation Tasks
> warning: this is just a showcase of the usage of basic apis in AutoGPTQ, which uses only one sample to quantize a much small model, quality of quantized model using such little samples may not good. Currently, `auto_gptq` supports: `LanguageModelingTask`, `SequenceClassificationTask` and `TextSummarizationTask`; more Tasks will come soon!
Below is an example for the simplest use of `auto_gptq` to quantize a model and inference after quantization: ## Usage
**Here are [tutorials](docs/tutorial)(continue updating...) for using `auto-gptq`, it's highly recommended for newcomers to read them first before trying example scripts.**
### Basic
> warning: this is just a show case of the usage of basic apis in AutoGPTQ, which uses only one sample to quantize a much small model, thus may not performs as well as expected in LLMs.
Below is an example for the simplest use of `auto_gptq`:
```python ```python
from transformers import AutoTokenizer, TextGenerationPipeline from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
pretrained_model_dir = "facebook/opt-125m" pretrained_model_dir = "facebook/opt-125m"
quantized_model_dir = "opt-125m-4bit" quantized_model_dir = "opt-125m-4bit"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
examples = [ examples = [
tokenizer( tokenizer(
@ -117,14 +100,13 @@ examples = [
quantize_config = BaseQuantizeConfig( quantize_config = BaseQuantizeConfig(
bits=4, # quantize model to 4-bit bits=4, # quantize model to 4-bit
group_size=128, # it is recommended to set the value to 128 group_size=128, # it is recommended to set the value to 128
desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad
) )
# load un-quantized model, by default, the model will always be loaded into CPU memory # load un-quantized model, by default, the model will always be loaded into CPU memory
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config) model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask" # quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
model.quantize(examples) model.quantize(examples, use_triton=False)
# save quantized model # save quantized model
model.save_quantized(quantized_model_dir) model.save_quantized(quantized_model_dir)
@ -132,28 +114,11 @@ model.save_quantized(quantized_model_dir)
# save quantized model using safetensors # save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True) model.save_quantized(quantized_model_dir, use_safetensors=True)
# push quantized model to Hugging Face Hub.
# to use use_auth_token=True, Login first via huggingface-cli login.
# or pass explcit token with: use_auth_token="hf_xxxxxxx"
# (uncomment the following three lines to enable this feature)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)
# alternatively you can save and push at the same time
# (uncomment the following three lines to enable this feature)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)
# load quantized model to the first GPU # load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0") model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False)
# download quantized model from Hugging Face Hub and load to the first GPU
# model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)
# inference with model.generate # inference with model.generate
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0])) print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to("cuda:0"))[0]))
# or you can also use pipeline # or you can also use pipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer) pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
@ -163,10 +128,7 @@ print(pipeline("auto-gptq is")[0]["generated_text"])
For more advanced features of model quantization, please reference to [this script](examples/quantization/quant_with_alpaca.py) For more advanced features of model quantization, please reference to [this script](examples/quantization/quant_with_alpaca.py)
### Customize Model ### Customize Model
<details> Below is an example to extend `auto_gptq` to support `OPT` model, as you will see, it's very easy:
<summary>Below is an example to extend `auto_gptq` to support `OPT` model, as you will see, it's very easy:</summary>
```python ```python
from auto_gptq.modeling import BaseGPTQForCausalLM from auto_gptq.modeling import BaseGPTQForCausalLM
@ -180,8 +142,8 @@ class OPTGPTQForCausalLM(BaseGPTQForCausalLM):
"model.decoder.project_in", "model.decoder.final_layer_norm" "model.decoder.project_in", "model.decoder.final_layer_norm"
] ]
# chained attribute names of linear layers in transformer layer module # chained attribute names of linear layers in transformer layer module
# normally, there are four sub lists, for each one the modules in it can be seen as one operation, # normally, there are four sub lists, for each one the modules in it can be seen as one operation,
# and the order should be the order when they are truly executed, in this case (and usually in most cases), # and the order should be the order when they are truly executed, in this case (and usually in most cases),
# they are: attention q_k_v projection, attention output projection, MLP project input, MLP project output # they are: attention q_k_v projection, attention output projection, MLP project input, MLP project output
inside_layer_modules = [ inside_layer_modules = [
["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"], ["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"],
@ -192,17 +154,12 @@ class OPTGPTQForCausalLM(BaseGPTQForCausalLM):
``` ```
After this, you can use `OPTGPTQForCausalLM.from_pretrained` and other methods as shown in Basic. After this, you can use `OPTGPTQForCausalLM.from_pretrained` and other methods as shown in Basic.
</details>
### Evaluation on Downstream Tasks ### Evaluation on Downstream Tasks
You can use tasks defined in `auto_gptq.eval_tasks` to evaluate model's performance on specific down-stream task before and after quantization. You can use tasks defined in `auto_gptq.eval_tasks` to evaluate model's performance on specific down-stream task before and after quantization.
The predefined tasks support all causal-language-models implemented in [🤗 transformers](https://github.com/huggingface/transformers) and in this project. The predefined tasks support all causal-language-models implemented in [🤗 transformers](https://github.com/huggingface/transformers) and in this project.
<details> Below is an example to evaluate `EleutherAI/gpt-j-6b` on sequence-classification task using `cardiffnlp/tweet_sentiment_multilingual` dataset:
<summary>Below is an example to evaluate `EleutherAI/gpt-j-6b` on sequence-classification task using `cardiffnlp/tweet_sentiment_multilingual` dataset:</summary>
```python ```python
from functools import partial from functools import partial
@ -252,14 +209,14 @@ task = SequenceClassificationTask(
"num_samples": 1000, # how many samples will be sampled to evaluation "num_samples": 1000, # how many samples will be sampled to evaluation
"sample_max_len": 1024, # max tokens for each sample "sample_max_len": 1024, # max tokens for each sample
"block_max_len": 2048, # max tokens for each data block "block_max_len": 2048, # max tokens for each data block
# function to load dataset, one must only accept data_name_or_path as input # function to load dataset, one must only accept data_name_or_path as input
# and return datasets.Dataset # and return datasets.Dataset
"load_fn": partial(datasets.load_dataset, name="english"), "load_fn": partial(datasets.load_dataset, name="english"),
# function to preprocess dataset, which is used for datasets.Dataset.map, # function to preprocess dataset, which is used for datasets.Dataset.map,
# must return Dict[str, list] with only two keys: [prompt_col_name, label_col_name] # must return Dict[str, list] with only two keys: [prompt_col_name, label_col_name]
"preprocess_fn": ds_refactor_fn, "preprocess_fn": ds_refactor_fn,
# truncate label when sample's length exceed sample_max_len # truncate label when sample's length exceed sample_max_len
"truncate_prompt": False "truncate_prompt": False
} }
) )
@ -278,46 +235,9 @@ print(
) )
``` ```
</details> ### More Examples
For more examples, please turn to [examples](examples/README.md)
## Learn More
[tutorials](docs/tutorial) provide step-by-step guidance to integrate `auto_gptq` with your own project and some best practice principles.
[examples](examples/README.md) provide plenty of example scripts to use `auto_gptq` in different ways.
## Supported Models
> you can use `model.config.model_type` to compare with the table below to check whether the model you use is supported by `auto_gptq`.
>
> for example, model_type of `WizardLM`, `vicuna` and `gpt4all` are all `llama`, hence they are all supported by `auto_gptq`.
| model type | quantization | inference | peft-lora | peft-ada-lora | peft-adaption_prompt |
|------------------------------------|--------------|-----------|-----------|---------------|-------------------------------------------------------------------------------------------------|
| bloom | ✅ | ✅ | ✅ | ✅ | |
| gpt2 | ✅ | ✅ | ✅ | ✅ | |
| gpt_neox | ✅ | ✅ | ✅ | ✅ | ✅[requires this peft branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
| gptj | ✅ | ✅ | ✅ | ✅ | ✅[requires this peft branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
| llama | ✅ | ✅ | ✅ | ✅ | ✅ |
| moss | ✅ | ✅ | ✅ | ✅ | ✅[requires this peft branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
| opt | ✅ | ✅ | ✅ | ✅ | |
| gpt_bigcode | ✅ | ✅ | ✅ | ✅ | |
| codegen | ✅ | ✅ | ✅ | ✅ | |
| falcon(RefinedWebModel/RefinedWeb) | ✅ | ✅ | ✅ | ✅ | |
## Supported Evaluation Tasks
Currently, `auto_gptq` supports: `LanguageModelingTask`, `SequenceClassificationTask` and `TextSummarizationTask`; more Tasks will come soon!
## Running tests
Tests can be run with:
```
pytest tests/ -s
```
## Acknowledgement ## Acknowledgement
- Specially thanks **Elias Frantar**, **Saleh Ashkboos**, **Torsten Hoefler** and **Dan Alistarh** for proposing **GPTQ** algorithm and open source the [code](https://github.com/IST-DASLab/gptq). - Specially thanks **Elias Frantar**, **Saleh Ashkboos**, **Torsten Hoefler** and **Dan Alistarh** for proposing **GPTQ** algorithm and open source the [code](https://github.com/IST-DASLab/gptq).
- Specially thanks **qwopqwop200**, for code in this project that relevant to quantization are mainly referenced from [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda). - Specially thanks **qwopqwop200**, for code in this project that relevant to quantization are mainly referenced from [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda).
[![Star History Chart](https://api.star-history.com/svg?repos=PanQiwei/AutoGPTQ&type=Date)](https://star-history.com/#PanQiWei/AutoGPTQ&Date)

View file

@ -12,70 +12,37 @@
<p> <p>
<a href="https://github.com/PanQiWei/AutoGPTQ/blob/main/README.md">English</a> | <a href="https://github.com/PanQiWei/AutoGPTQ/blob/main/README.md">English</a> |
<b>中文</b> <b>中文</b>
</p> <p>
</h4> </h4>
## 通向 v1.0.0 之路
嗨,社区的伙伴们,好久不见!很抱歉这段时间由于个人原因,我没能以较高的频率来更新这个项目。过去几周对我的职业生涯规划而言意义重大。在不久前,我正式告别了毕业后便加入两年之久的创业团队,非常感谢团队的领导和同事们给予我的信任与指导,让我能够在两年时间里飞速地成长;同时也十分感激团队允许我自 AutoGPTQ 项目创立以来一直无偿使用内部的 A100 GPU 服务器集群以完成各项实验与性能测评。(当然今后是无法继续使用了,因此**若有新的硬件赞助我将感激不尽**!)过去的两年里,我在这个团队中担任算法工程师的角色,负责基于大语言模型的对话系统架构设计与开发,我们曾成功推出一款名为 gemsouls 的产品,但不幸的是它已经停止运营。而现在,这个团队即将推出一款名为 [modelize](https://www.beta.modelize.ai/) 的新产品,**这是一个大模型原生的 AI 智能体平台,用户可以使用多个 AI 智能体搭建一个高度自动化的团队,让它们在工作流中相互合作,高效完成复杂的项目。**
话归正题,我非常兴奋地看到,在过去几个月的时间里,针对大语言模型推理性能优化的研究取得了巨大的进展,如今我们不仅能够在高端显卡上完成大语言模型的推理,甚至在 CPU 和边缘设备上都可以轻松运行大语言模型。一系列的技术进步,让我同样迫不及待地在开源社区上做出更多的贡献,因此,首先,我将用约四周的时间将 AutoGPTQ 迭代至 v1.0.0 正式版本,在此期间,也会有 2~3 个小版本发布以让用户能够及时体验性能优化和新特性。在我的愿景里,**到 v1.0.0 版本正式发布时AutoGPTQ 将能够作为一个灵活可拓展的、支持所有 GPTQ-like 方法的量化后端,自动地完成各种基于 Pytorch 编写的大语言模型的量化工作**。我在[这里](https://github.com/PanQiWei/AutoGPTQ/issues/348)详细介绍了开发计划,欢迎移步至此进行讨论并给出你们的建议!
## 新闻或更新 ## 新闻或更新
- 2023-05-04 - (更新) - 支持在 `not desc_act or group_size == -1` 的情况下使用更快的 cuda 算子。
- 2023-08-23 - (新闻) - 🤗 Transformers、optimum 和 peft 完成了对 `auto-gptq` 的集成,现在使用 GPTQ 模型进行推理和训练将变得更容易!阅读 [这篇博客](https://huggingface.co/blog/gptq-integration) 和相关资源以了解更多细节! - 2023-04-29 - (更新) - 支持从指定的模型权重文件名或量化配置(quantize_config)加载量化过的模型。
- 2023-08-21 - (新闻) - 通义千问团队发布了基于 `auto-gptq` 的 Qwen-7B 4bit 量化版本模型,并提供了[详尽的测评结果](https://huggingface.co/Qwen/Qwen-7B-Chat-Int4#%E9%87%8F%E5%8C%96-quantization) - 2023-04-28 - (更新) - 支持 CPU 分载权重和在多设备上执行模型量化或推理, 支持 `gpt2` 类型的模型。
- 2023-08-06 - (更新) - 支持 exllama 的 q4 CUDA 算子使得 int4 量化模型能够获得至少1.3倍的推理速度提升.
- 2023-08-04 - (更新) - 支持 RoCm 使得 AMD GPU 的用户能够使用 auto-gptq 的 CUDA 拓展.
- 2023-07-26 - (更新) - 一个优雅的 [PPL 测评脚本](examples/benchmark/perplexity.py)以获得可以与诸如 `llama.cpp` 等代码库进行公平比较的结果。
- 2023-06-05 - (更新) - 集成 🤗 peft 来使用 gptq 量化过的模型训练适应层,支持 LoRAAdaLoRAAdaptionPrompt 等。
- 2023-05-30 - (更新) - 支持从 🤗 Hub 下载量化好的模型或上次量化好的模型到 🤗 Hub。
*获取更多的历史信息,请转至[这里](docs/NEWS_OR_UPDATE.md)* *获取更多的历史信息,请转至[这里](docs/NEWS_OR_UPDATE.md)*
## 性能对比
### 推理速度
> 以下结果通过[这个脚本](examples/benchmark/generation_speed.py)生成,文本输入的 batch size 为1解码策略为 beam search 并且强制模型生成512个 token速度的计量单位为 tokens/s越大越好
>
> 量化模型通过能够最大化推理速度的方式加载。
| model | GPU | num_beams | fp16 | gptq-int4 |
|---------------|---------------|-----------|-------|-----------|
| llama-7b | 1xA100-40G | 1 | 18.87 | 25.53 |
| llama-7b | 1xA100-40G | 4 | 68.79 | 91.30 |
| moss-moon 16b | 1xA100-40G | 1 | 12.48 | 15.25 |
| moss-moon 16b | 1xA100-40G | 4 | OOM | 42.67 |
| moss-moon 16b | 2xA100-40G | 1 | 06.83 | 06.78 |
| moss-moon 16b | 2xA100-40G | 4 | 13.10 | 10.80 |
| gpt-j 6b | 1xRTX3060-12G | 1 | OOM | 29.55 |
| gpt-j 6b | 1xRTX3060-12G | 4 | OOM | 47.36 |
### 困惑度PPL
对于困惑度的对比, 你可以参考 [这里](https://github.com/qwopqwop200/GPTQ-for-LLaMa#result) 和 [这里](https://github.com/qwopqwop200/GPTQ-for-LLaMa#gptq-vs-bitsandbytes)
## 安装 ## 安装
### 快速安装 ### 快速安装
你可以通过 pip 来安装与 PyTorch 2.0.1 相兼容的最新稳定版本的 AutoGPTQ 的预构建轮子文件: 你可以通过 pip 来安装 AutoGPTQ 当前最新的稳定版本:
```shell
* 对于 CUDA 11.7 `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu117/` pip install auto-gptq
* 对于 CUDA 11.8 `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/` ```
* 对于 RoCm 5.4.2 `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm542/`
**警告:** 预构建的轮子文件不一定在 PyTorch 的 nightly 版本上有效。如果要使用 PyTorch 的 nightly 版本,请从源码安装 AutoGPTQ。
#### 取消 cuda 拓展的安装 #### 取消 cuda 拓展的安装
默认情况下,在 `torch``cuda` 已经于你的机器上被安装时cuda 拓展将被自动安装,如果你不想要这些拓展的话,采用以下安装命令: 默认情况下,在 `torch``cuda` 已经于你的机器上被安装时cuda 拓展将被自动安装,如果你不想要这些拓展的话,采用以下安装命令:
```shell ```shell
BUILD_CUDA_EXT=0 pip install auto-gptq BUILD_CUDA_EXT=0 pip install auto-gptq
``` ```
同时为确保该拓展——`autogptq_cuda` 不再存在于你的虚拟环境,执行以下命令: 同时为确保该拓展——`quant_cuda` 不再存在于你的虚拟环境,执行以下命令:
```shell ```shell
pip uninstall autogptq_cuda -y pip uninstall quant_cuda -y
```
#### 支持使用 LLaMa 模型
若想要尝试 LLaMa 模型,但 `transformers` 版本不为支持该模型的最新版本,使用以下命令:
```shell
pip install auto-gptq[llama]
``` ```
#### 支持使用 triton 加速 #### 支持使用 triton 加速
若想使用 `triton` 加速模型推理,使用以下命令: 若想使用 `triton` 加速模型推理,使用以下命令:
> 警告:目前 triton 仅支持 linux 操作系统;当使用 triton 时 3-bit 数值类型的量化将不被支持 > 警告:目前 triton 仅支持 linux 操作系统;当使用 triton 时 3-bit 数值类型的量化将不被支持
@ -85,9 +52,6 @@ pip install auto-gptq[triton]
``` ```
### 从源码安装 ### 从源码安装
<details>
<summary>点击以查看详情</summary>
克隆源码: 克隆源码:
```shell ```shell
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
@ -98,24 +62,25 @@ pip install .
``` ```
正如在快速安装一节,你可以使用 `BUILD_CUDA_EXT=0` 来取消构建 cuda 拓展。 正如在快速安装一节,你可以使用 `BUILD_CUDA_EXT=0` 来取消构建 cuda 拓展。
如果你想要使用 LLaMa 模型,请使用 `.[llama]`
如果你想要使用 triton 加速且其能够被你的操作系统所支持,请使用 `.[triton]` 如果你想要使用 triton 加速且其能够被你的操作系统所支持,请使用 `.[triton]`
对应 AMD GPUs为了从源码安装以支持 RoCm请设置 `ROCM_VERSION` 环境变量。同时通过设置 `PYTORCH_ROCM_ARCH` ([reference](https://github.com/pytorch/pytorch/blob/7b73b1e8a73a1777ebe8d2cd4487eb13da55b3ba/setup.py#L132)) 可提升编译速度,例如:对于 MI200 系列设备,该变量可设为 `gfx90a`。例子:
``` ## 支持的模型
ROCM_VERSION=5.6 pip install . 目前, `auto_gptq` 支持以下模型: `bloom`, `gpt2`, `gpt_neox`, `gptj`, `llama`, `moss``opt`;更多的 Transformer 模型即将到来!
```
对于 RoCm 系统,在从源码安装时额外需要提前安装以下包:`rocsparse-dev`, `hipsparse-dev`, `rocthrust-dev`, `rocblas-dev` and `hipblas-dev` ## 支持的评估任务
目前, `auto_gptq` 支持以下评估任务: `LanguageModelingTask`, `SequenceClassificationTask``TextSummarizationTask`;更多的评估任务即将到来!
</details> ## 用法
## 快速开始 **对于初次使用者,强烈建议在运行示例脚本前先阅读[教程](docs/tutorial)(持续更新中……)**
### 量化和推理 ### 基本用法
> 警告:这里仅是对 AutoGPTQ 中基本接口的用法展示,只使用了一条文本来量化一个特别小的模型,因此其结果的表现可能不如在大模型上执行量化后预期的那样好。 > 警告:这里仅是对 AutoGPTQ 中基本接口的用法展示,只使用了一条文本来量化一个特别小的模型,因此其结果的表现可能不如在大模型上执行量化后预期的那样好。
以下展示了使用 `auto_gptq` 进行量化和推理的最简单用法 以下`auto_gptq` 的最简单用法示例
```python ```python
from transformers import AutoTokenizer, TextGenerationPipeline from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
@ -135,14 +100,13 @@ examples = [
quantize_config = BaseQuantizeConfig( quantize_config = BaseQuantizeConfig(
bits=4, # 将模型量化为 4-bit 数值类型 bits=4, # 将模型量化为 4-bit 数值类型
group_size=128, # 一般推荐将此参数的值设置为 128 group_size=128, # 一般推荐将此参数的值设置为 128
desc_act=False, # 设为 False 可以显著提升推理速度,但是 ppl 可能会轻微地变差
) )
# 加载未量化的模型,默认情况下,模型总是会被加载到 CPU 内存中 # 加载未量化的模型,默认情况下,模型总是会被加载到 CPU 内存中
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config) model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
# 量化模型, 样本的数据类型应该为 List[Dict],其中字典的键有且仅有 input_ids 和 attention_mask # 量化模型, 样本的数据类型应该为 List[Dict],其中字典的键有且仅有 input_ids 和 attention_mask
model.quantize(examples) model.quantize(examples, use_triton=False)
# 保存量化好的模型 # 保存量化好的模型
model.save_quantized(quantized_model_dir) model.save_quantized(quantized_model_dir)
@ -150,28 +114,11 @@ model.save_quantized(quantized_model_dir)
# 使用 safetensors 保存量化好的模型 # 使用 safetensors 保存量化好的模型
model.save_quantized(quantized_model_dir, use_safetensors=True) model.save_quantized(quantized_model_dir, use_safetensors=True)
# 将量化好的模型直接上传至 Hugging Face Hub
# 当使用 use_auth_token=True 时, 确保你已经首先使用 huggingface-cli login 进行了登录
# 或者可以使用 use_auth_token="hf_xxxxxxx" 来显式地添加账户认证 token
# (取消下面三行代码的注释来使用该功能)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)
# 或者你也可以同时将量化好的模型保存到本地并上传至 Hugging Face Hub
# (取消下面三行代码的注释来使用该功能)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)
# 加载量化好的模型到能被识别到的第一块显卡中 # 加载量化好的模型到能被识别到的第一块显卡中
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0") model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False)
# 从 Hugging Face Hub 下载量化好的模型并加载到能被识别到的第一块显卡中
# model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)
# 使用 model.generate 执行推理 # 使用 model.generate 执行推理
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0])) print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to("cuda:0"))[0]))
# 或者使用 TextGenerationPipeline # 或者使用 TextGenerationPipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer) pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
@ -181,11 +128,7 @@ print(pipeline("auto-gptq is")[0]["generated_text"])
参考 [此样例脚本](examples/quantization/quant_with_alpaca.py) 以了解进阶的用法。 参考 [此样例脚本](examples/quantization/quant_with_alpaca.py) 以了解进阶的用法。
### 自定义模型 ### 自定义模型
以下展示了如何拓展 `auto_gptq` 以支持 `OPT` 模型,如你所见,这非常简单:
<details>
<summary>以下展示了如何拓展 `auto_gptq` 以支持 `OPT` 模型,如你所见,这非常简单:</summary>
```python ```python
from auto_gptq.modeling import BaseGPTQForCausalLM from auto_gptq.modeling import BaseGPTQForCausalLM
@ -211,18 +154,12 @@ class OPTGPTQForCausalLM(BaseGPTQForCausalLM):
``` ```
然后, 你就可以像在基本用法一节中展示的那样使用 `OPTGPTQForCausalLM.from_pretrained` 和其他方法。 然后, 你就可以像在基本用法一节中展示的那样使用 `OPTGPTQForCausalLM.from_pretrained` 和其他方法。
</details>
### 在下游任务上执行评估 ### 在下游任务上执行评估
你可以使用在 `auto_gptq.eval_tasks` 中定义的任务来评估量化前后的模型在某个特定下游任务上的表现。 你可以使用在 `auto_gptq.eval_tasks` 中定义的任务来评估量化前后的模型在某个特定下游任务上的表现。
这些预定义的模型支持所有在 [🤗 transformers](https://github.com/huggingface/transformers)和本项目中被实现了的 causal-language-models。 这些预定义的模型支持所有在 [🤗 transformers](https://github.com/huggingface/transformers)和本项目中被实现了的 causal-language-models。
<details> 以下是使用 `cardiffnlp/tweet_sentiment_multilingual` 数据集在序列分类(文本分类)任务上评估 `EleutherAI/gpt-j-6b` 模型的示例:
<summary>以下是使用 `cardiffnlp/tweet_sentiment_multilingual` 数据集在序列分类(文本分类)任务上评估 `EleutherAI/gpt-j-6b` 模型的示例:</summary>
```python ```python
from functools import partial from functools import partial
@ -298,37 +235,9 @@ print(
) )
``` ```
</details> ### 更多示例
请转至 [examples](examples/README.md)以获取更多的示例。
## 了解更多
[教程](docs/tutorial) 提供了将 `auto_gptq` 集成到你的项目中的手把手指导和最佳实践准则。
[示例](examples/README.md) 提供了大量示例脚本以将 `auto_gptq` 用于不同领域。
## 支持的模型
> 你可以使用 `model.config.model_type` 来对照下表以检查你正在使用的一个模型是否被 `auto_gptq` 所支持。
>
> 比如, `WizardLM``vicuna``gpt4all` 模型的 `model_type` 皆为 `llama` 因此这些模型皆被 `auto_gptq` 所支持。
| model type | quantization | inference | peft-lora | peft-ada-lora | peft-adaption_prompt |
|------------------------------------|--------------|-----------|-----------|---------------|-----------------------------------------------------------------------------------|
| bloom | ✅ | ✅ | ✅ | ✅ | |
| gpt2 | ✅ | ✅ | ✅ | ✅ | |
| gpt_neox | ✅ | ✅ | ✅ | ✅ | ✅[要求该分支的 peft](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
| gptj | ✅ | ✅ | ✅ | ✅ | ✅[要求该分支的 peft](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
| llama | ✅ | ✅ | ✅ | ✅ | ✅ |
| moss | ✅ | ✅ | ✅ | ✅ | ✅[要求该分支的 peft](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
| opt | ✅ | ✅ | ✅ | ✅ | |
| gpt_bigcode | ✅ | ✅ | ✅ | ✅ | |
| codegen | ✅ | ✅ | ✅ | ✅ | |
| falcon(RefinedWebModel/RefinedWeb) | ✅ | ✅ | ✅ | ✅ | |
## 支持的评估任务
目前, `auto_gptq` 支持以下评估任务: `LanguageModelingTask`, `SequenceClassificationTask``TextSummarizationTask`;更多的评估任务即将到来!
## 致谢 ## 致谢
- 特别感谢 **Elias Frantar** **Saleh Ashkboos** **Torsten Hoefler****Dan Alistarh** 提出 **GPTQ** 算法并开源[代码](https://github.com/IST-DASLab/gptq)。 - 特别感谢 **Elias Frantar** **Saleh Ashkboos** **Torsten Hoefler****Dan Alistarh** 提出 **GPTQ** 算法并开源[代码](https://github.com/IST-DASLab/gptq)。
- 特别感谢 **qwopqwop200** 本项目中涉及到模型量化的代码主要参考自 [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda)。 - 特别感谢 **qwopqwop200** 本项目中涉及到模型量化的代码主要参考自 [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda)。
[![Star History Chart](https://api.star-history.com/svg?repos=PanQiwei/AutoGPTQ&type=Date)](https://star-history.com/#PanQiWei/AutoGPTQ&Date)

View file

@ -1,5 +1,2 @@
__version__ = "0.5.0.dev0"
from .modeling import BaseQuantizeConfig from .modeling import BaseQuantizeConfig
from .modeling import AutoGPTQForCausalLM from .modeling import AutoGPTQForCausalLM
from .utils.peft_utils import get_gptq_peft_model
from .utils.exllama_utils import exllama_set_max_input_length

View file

@ -7,11 +7,3 @@ from .gptj import *
from .llama import * from .llama import *
from .moss import * from .moss import *
from .opt import * from .opt import *
from .rw import *
from .gpt_bigcode import *
from .codegen import *
from .baichuan import *
from .internlm import *
from .qwen import *
from .mistral import *
from .mpt import *

View file

@ -1,10 +1,9 @@
import copy import copy
import json import json
import warnings
import os import os
from dataclasses import dataclass, field, fields from dataclasses import dataclass, field, fields
from logging import getLogger from logging import getLogger
from os.path import join, isfile, isdir from os.path import join, isfile
from typing import Dict, List, Optional, Union from typing import Dict, List, Optional, Union
import accelerate import accelerate
@ -13,21 +12,13 @@ import torch.nn as nn
import transformers import transformers
from accelerate.hooks import remove_hook_from_module from accelerate.hooks import remove_hook_from_module
from safetensors.torch import save_file as safe_save from safetensors.torch import save_file as safe_save
from safetensors.torch import load_file as safe_load
from transformers import AutoConfig, AutoModelForCausalLM, PreTrainedModel from transformers import AutoConfig, AutoModelForCausalLM, PreTrainedModel
from transformers.utils.hub import PushToHubMixin, cached_file, create_repo, create_commit, CommitOperationAdd from transformers.utils.hub import PushToHubMixin
from transformers.utils.generic import ContextManagers
from transformers.modeling_utils import no_init_weights
from ._const import * from ._const import *
from ._utils import * from ._utils import *
from ..nn_modules.qlinear import GeneralQuantLinear
from ..nn_modules._fused_base import FusedBaseAttentionModule, FusedBaseMLPModule
from ..quantization import GPTQ from ..quantization import GPTQ
from ..utils.data_utils import collate_data from ..utils.data_utils import collate_data
from ..utils.import_utils import (
dynamically_import_QuantLinear, TRITON_AVAILABLE, AUTOGPTQ_CUDA_AVAILABLE, EXLLAMA_KERNELS_AVAILABLE, QIGEN_AVAILABLE, EXLLAMAV2_KERNELS_AVAILABLE
)
logger = getLogger(__name__) logger = getLogger(__name__)
@ -38,11 +29,8 @@ class BaseQuantizeConfig(PushToHubMixin):
group_size: int = field(default=-1) group_size: int = field(default=-1)
damp_percent: float = field(default=0.01) damp_percent: float = field(default=0.01)
desc_act: bool = field(default=True) desc_act: bool = field(default=True)
static_groups: bool = field(default=False)
sym: bool = field(default=True) sym: bool = field(default=True)
true_sequential: bool = field(default=True) true_sequential: bool = field(default=True)
model_name_or_path: Optional[str] = field(default=None)
model_file_base_name: Optional[str] = field(default=None)
def __post_init__(self): def __post_init__(self):
fields_info = fields(self) fields_info = fields(self)
@ -59,48 +47,9 @@ class BaseQuantizeConfig(PushToHubMixin):
json.dump(self.to_dict(), f, indent=2) json.dump(self.to_dict(), f, indent=2)
@classmethod @classmethod
def from_pretrained(cls, save_dir: str, **kwargs): def from_pretrained(cls, save_dir: str):
# Parameters related to loading from Hugging Face Hub with open(join(save_dir, "quantize_config.json"), "r", encoding="utf-8") as f:
cache_dir = kwargs.pop("cache_dir", None) return cls(**json.load(f))
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
commit_hash = kwargs.pop("_commit_hash", None)
quantize_config_filename = "quantize_config.json"
if os.path.isdir(save_dir): # Local
resolved_config_file = join(save_dir, quantize_config_filename)
else: # Remote
resolved_config_file = cached_file(
save_dir,
quantize_config_filename,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
use_auth_token=use_auth_token,
revision=revision,
local_files_only=local_files_only,
subfolder=subfolder,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
_commit_hash=commit_hash,
)
field_names = [field.name for field in fields(cls)]
with open(resolved_config_file, "r", encoding="utf-8") as f:
args_from_json = json.load(f)
filtered_args = {}
for key, val in args_from_json.items():
if key in field_names:
filtered_args[key] = val
else:
logger.warning(f"ignoring unknown parameter in {quantize_config_filename}: {key}.")
return cls(**filtered_args)
def to_dict(self): def to_dict(self):
return { return {
@ -108,11 +57,8 @@ class BaseQuantizeConfig(PushToHubMixin):
"group_size": self.group_size, "group_size": self.group_size,
"damp_percent": self.damp_percent, "damp_percent": self.damp_percent,
"desc_act": self.desc_act, "desc_act": self.desc_act,
"static_groups": self.static_groups,
"sym": self.sym, "sym": self.sym,
"true_sequential": self.true_sequential, "true_sequential": self.true_sequential,
"model_name_or_path": self.model_name_or_path,
"model_file_base_name": self.model_file_base_name,
} }
@ -123,19 +69,7 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
inside_layer_modules: List[List[str]] = None inside_layer_modules: List[List[str]] = None
lm_head_name: str = "lm_head" lm_head_name: str = "lm_head"
fused_attn_module_type: Optional[FusedBaseAttentionModule] = None def __init__(self, model: PreTrainedModel, quantized: bool, quantize_config: BaseQuantizeConfig):
fused_mlp_module_type: Optional[FusedBaseMLPModule] = None
def __init__(
self,
model: PreTrainedModel,
quantized: bool,
quantize_config: BaseQuantizeConfig,
is_triton_backend: bool = False,
injected_fused_attention: bool = False,
injected_fused_mlp: bool = False,
trainable: bool = False
):
super().__init__() super().__init__()
self.model = model self.model = model
@ -144,11 +78,6 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
self.quantize_config = quantize_config self.quantize_config = quantize_config
self.config = self.model.config self.config = self.model.config
self.is_triton_backend = is_triton_backend
self.injected_fused_attention = injected_fused_attention
self.injected_fused_mlp = injected_fused_mlp
self.trainable = trainable
@property @property
def quantized(self): def quantized(self):
return self._quantized return self._quantized
@ -212,22 +141,17 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
examples: List[Dict[str, Union[List[int], torch.LongTensor]]], examples: List[Dict[str, Union[List[int], torch.LongTensor]]],
batch_size: int = 1, batch_size: int = 1,
use_triton: bool = False, use_triton: bool = False,
use_cuda_fp16: bool = True,
autotune_warmup_after_quantized: bool = False, autotune_warmup_after_quantized: bool = False,
cache_examples_on_gpu: bool = True cache_examples_on_gpu: bool = True
): ):
if self.quantized: if self.quantized:
raise EnvironmentError("can't execute quantize because the model is quantized.") raise EnvironmentError("can't execute quantize because the model is quantized.")
if use_triton and not TRITON_AVAILABLE:
logger.warning("triton is not installed, reset use_triton to False")
use_triton = False
device_map = self.hf_device_map device_map = self.hf_device_map
if device_map: if device_map:
for name, device in device_map.items(): for name, device in device_map.items():
if device == "cpu": if device == "cpu":
logger.info(f"truly offloading {name} to cpu with hook.") module = get_module_by_name(self.model, name)
module = get_module_by_name_suffix(self.model, name)
remove_hook_from_module(module, recurse=True) remove_hook_from_module(module, recurse=True)
accelerate.cpu_offload_with_hook(module, CUDA_0) accelerate.cpu_offload_with_hook(module, CUDA_0)
@ -255,8 +179,7 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
break break
layer_inputs.append(move_to_device(inp, self.data_device)) layer_inputs.append(move_to_device(inp, self.data_device))
attention_masks.append(kwargs["attention_mask"].to(self.data_device)) attention_masks.append(kwargs["attention_mask"].to(self.data_device))
pos_ids = kwargs.get("position_ids", None) if (pos_ids := kwargs.get("position_ids", None)) is not None:
if pos_ids is not None:
position_ids.append(move_to_device(pos_ids, self.data_device)) position_ids.append(move_to_device(pos_ids, self.data_device))
one_kwargs = dict() one_kwargs = dict()
for k, v in kwargs.items(): # make sure other arguments also be captured for k, v in kwargs.items(): # make sure other arguments also be captured
@ -272,7 +195,7 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
self.model.config.use_cache = False self.model.config.use_cache = False
num_batches = len(examples) num_batches = len(examples)
layers = get_module_by_name_prefix(self.model, self.layers_block_name) layers = get_module_by_name(self.model, self.layers_block_name)
force_layer_back_to_cpu = False force_layer_back_to_cpu = False
if get_device(layers[0]) == CPU: if get_device(layers[0]) == CPU:
@ -282,7 +205,7 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
cur_layer_device = get_device(layers[0]) cur_layer_device = get_device(layers[0])
ori_outside_layer_module_devices = {} ori_outside_layer_module_devices = {}
for module_name in self.outside_layer_modules: for module_name in self.outside_layer_modules:
module = get_module_by_name_prefix(self.model, module_name) module = get_module_by_name(self.model, module_name)
if module is None: if module is None:
continue continue
@ -306,7 +229,7 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
move_to_device(layers[0], CPU if force_layer_back_to_cpu else cur_layer_device) move_to_device(layers[0], CPU if force_layer_back_to_cpu else cur_layer_device)
for module_name in self.outside_layer_modules: for module_name in self.outside_layer_modules:
module = get_module_by_name_prefix(self.model, module_name) module = get_module_by_name(self.model, module_name)
if module is not None: if module is not None:
move_to_device(module, ori_outside_layer_module_devices[module_name]) move_to_device(module, ori_outside_layer_module_devices[module_name])
@ -341,7 +264,6 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
sym=self.quantize_config.sym, sym=self.quantize_config.sym,
mse=False, mse=False,
) )
def add_batch(name): def add_batch(name):
def tmp(_, inp, out): def tmp(_, inp, out):
gptq[name].add_batch(inp[0].data, out.data) gptq[name].add_batch(inp[0].data, out.data)
@ -357,8 +279,10 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
additional_layer_inputs = { additional_layer_inputs = {
"attention_mask": layer_attention_mask "attention_mask": layer_attention_mask
} }
layer_position_ids = None if not position_ids else move_to_device(position_ids[j], cur_layer_device) if (
if layer_position_ids is not None: layer_position_ids := None if not position_ids
else move_to_device(position_ids[j], cur_layer_device)
) is not None:
additional_layer_inputs["position_ids"] = layer_position_ids additional_layer_inputs["position_ids"] = layer_position_ids
for k, v in layer_input_kwargs[j].items(): for k, v in layer_input_kwargs[j].items():
if isinstance(v, torch.Tensor): if isinstance(v, torch.Tensor):
@ -373,9 +297,8 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
logger.info(f'Quantizing {name} in layer {i + 1}/{len(layers)}...') logger.info(f'Quantizing {name} in layer {i + 1}/{len(layers)}...')
scale, zero, g_idx = gptq[name].fasterquant( scale, zero, g_idx = gptq[name].fasterquant(
percdamp=self.quantize_config.damp_percent, percdamp=self.quantize_config.damp_percent,
group_size=self.quantize_config.group_size, groupsize=self.quantize_config.group_size,
actorder=self.quantize_config.desc_act, actorder=self.quantize_config.desc_act
static_groups=self.quantize_config.static_groups
) )
quantizers[f'{self.layers_block_name}.{i}.{name}'] = ( quantizers[f'{self.layers_block_name}.{i}.{name}'] = (
gptq[name].quantizer.to(CPU if force_layer_back_to_cpu else cur_layer_device), gptq[name].quantizer.to(CPU if force_layer_back_to_cpu else cur_layer_device),
@ -391,8 +314,10 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
additional_layer_inputs = { additional_layer_inputs = {
"attention_mask": layer_attention_mask "attention_mask": layer_attention_mask
} }
layer_position_ids = None if not position_ids else move_to_device(position_ids[j], cur_layer_device) if (
if layer_position_ids is not None: layer_position_ids := None if not position_ids
else move_to_device(position_ids[j], cur_layer_device)
) is not None:
additional_layer_inputs["position_ids"] = layer_position_ids additional_layer_inputs["position_ids"] = layer_position_ids
for k, v in layer_input_kwargs[j].items(): for k, v in layer_input_kwargs[j].items():
if isinstance(v, torch.Tensor): if isinstance(v, torch.Tensor):
@ -418,14 +343,13 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
bits=self.quantize_config.bits, bits=self.quantize_config.bits,
group_size=self.quantize_config.group_size, group_size=self.quantize_config.group_size,
use_triton=use_triton, use_triton=use_triton,
use_cuda_fp16=use_cuda_fp16,
desc_act=self.quantize_config.desc_act, desc_act=self.quantize_config.desc_act,
warmup_triton=autotune_warmup_after_quantized, autotune_warmup=autotune_warmup_after_quantized,
force_layer_back_to_cpu=force_layer_back_to_cpu force_layer_back_to_cpu=force_layer_back_to_cpu
) )
if device_map: if device_map:
self.model = remove_hook_from_module(self.model, recurse=True) self.model = remove_hook_from_module(self.model, recurse=True)
self.model = simple_dispatch_model(self.model, device_map) self.model = accelerate.dispatch_model(self.model, device_map, offload_buffers=True)
self.model.config.use_cache = forward_pass_use_cache self.model.config.use_cache = forward_pass_use_cache
self._quantized = True self._quantized = True
@ -434,18 +358,13 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
@property @property
def device(self): def device(self):
if not self.hf_device_map: return self.model.device
return self.model.device
else:
device = [d for d in self.hf_device_map.values() if d not in {'cpu', 'disk'}][0]
return torch.device(device)
def to(self, device: Union[str, torch.device]): def to(self, device: Union[str, torch.device]):
self.model.to(device) return self.model.to(device)
return self
def forward(self, *args, **kwargs): def forward(self, **kwargs):
return self.model(*args, **kwargs) return self.model(**kwargs)
def generate(self, **kwargs): def generate(self, **kwargs):
"""shortcut for model.generate""" """shortcut for model.generate"""
@ -456,78 +375,7 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
"""shortcut for model.prepare_inputs_for_generation""" """shortcut for model.prepare_inputs_for_generation"""
return self.model.prepare_inputs_for_generation(*args, **kwargs) return self.model.prepare_inputs_for_generation(*args, **kwargs)
def push_to_hub( def save_quantized(self, save_dir: str, use_safetensors: bool = False):
self,
repo_id: str,
save_dir: Optional[str] = None,
use_safetensors: Optional[bool] = True,
safetensors_metadata: Optional[Dict[str, str]] = None,
commit_message: Optional[str] = "Upload of AutoGPTQ quantized model",
use_auth_token: Optional[Union[bool, str]] = None,
private: Optional[bool] = None,
token: Optional[Union[bool, str]] = None,
create_pr: Optional[bool] = False,
) -> str:
"""
Upload the model to the Hugging Face Hub.
Parameters:
repo_id (`str`):
The name of the repository you want to push your tool to. It should contain your organization name when
pushing to a given organization.
save_dir (`str`, *optional*):
The name of the local folder to save the model to.
If the model has already been saved, this parameter can be omitted.
use_safetensors (`bool`, *optional*):
Save the model using `safetensors`.
If the model has already been saved, this parameter can be omitted.
safetensors_metadata: (`dict`, *optional*, defaults to `None`):
Pass optional metadata dictionary to be saved in the `safetensors` model file(s).
Metadata is optional and is purely for informational purposes. It does not affect inference.
If `None`, no metadata will be saved.
commit_message (`str`, *optional*, defaults to `"Upload tool"`):
Message to commit while pushing.
use_auth_token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url`
is not specified.
private (`bool`, *optional*):
Whether or not the repository created should be private.
token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
create_pr (`bool`, *optional*, defaults to `False`):
Whether or not to create a PR with the uploaded files or directly commit.
"""
if (self.quantize_config.model_name_or_path is None or not isdir(self.quantize_config.model_name_or_path)) and save_dir is None:
raise ValueError("Quantized model should be saved first, or you can provide save_dir to make sure model is saved to local disk before uploading.")
if save_dir is not None:
logger.info(f"Saving model to {save_dir}")
self.save_quantized(save_dir, use_safetensors, safetensors_metadata)
repo_url = create_repo(
repo_id=repo_id, token=token, private=private, exist_ok=True, repo_type="model"
)
repo_id = repo_url.repo_id
if self.quantize_config.model_name_or_path is not None:
work_dir = self.quantize_config.model_name_or_path
operations = [
CommitOperationAdd(path_or_fileobj=join(work_dir, f), path_in_repo=f)
for f in os.listdir(work_dir)
]
logger.info(f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}")
return create_commit(
repo_id=repo_id,
operations=operations,
commit_message=commit_message,
token=use_auth_token,
create_pr=create_pr,
repo_type="model",
)
def save_quantized(self, save_dir: str, use_safetensors: bool = False, safetensors_metadata: Optional[Dict[str, str]] = None):
"""save quantized model and configs to local disk""" """save quantized model and configs to local disk"""
os.makedirs(save_dir, exist_ok=True) os.makedirs(save_dir, exist_ok=True)
@ -536,60 +384,23 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
self.model.to(CPU) self.model.to(CPU)
model_base_name = self.quantize_config.model_file_base_name or f"gptq_model-{self.quantize_config.bits}bit-{self.quantize_config.group_size}g" model_save_name = f"gptq_model-{self.quantize_config.bits}bit-{self.quantize_config.group_size}g"
if use_safetensors: if use_safetensors:
model_save_name = model_base_name + ".safetensors" model_save_name += ".safetensors"
state_dict = self.model.state_dict() state_dict = self.model.state_dict()
state_dict = {k: v.clone().contiguous() for k, v in state_dict.items()} state_dict = {k: v.clone().contiguous() for k, v in state_dict.items()}
if safetensors_metadata is None: safe_save(state_dict, join(save_dir, model_save_name))
safetensors_metadata = {}
elif not isinstance(safetensors_metadata, dict):
raise TypeError("safetensors_metadata must be a dictionary.")
else:
logger.debug(f"Received safetensors_metadata: {safetensors_metadata}")
new_safetensors_metadata = {}
converted_keys = False
for key, value in safetensors_metadata.items():
if not isinstance(key, str) or not isinstance(value, str):
converted_keys = True
try:
new_key = str(key)
new_value = str(value)
except Exception as e:
raise TypeError(f"safetensors_metadata: both keys and values must be strings and an error occured when trying to convert them: {e}")
if new_key in new_safetensors_metadata:
logger.warning(f"After converting safetensors_metadata keys to strings, the key '{new_key}' is duplicated. Ensure that all your metadata keys are strings to avoid overwriting.")
new_safetensors_metadata[new_key] = new_value
safetensors_metadata = new_safetensors_metadata
if converted_keys:
logger.debug(f"One or more safetensors_metadata keys or values had to be converted to str(). Final safetensors_metadata: {safetensors_metadata}")
# Format is required to enable Accelerate to load the metadata
# otherwise it raises an OSError
safetensors_metadata['format'] = "pt"
# Store the quantization configuration as safetensors metadata
from auto_gptq import __version__
safetensors_metadata['auto_gptq_version'] = str(__version__)
safetensors_metadata['gptq_bits'] = str(self.quantize_config.bits)
safetensors_metadata['gptq_group_size'] = str(self.quantize_config.group_size)
safetensors_metadata['gptq_desc_act'] = str(self.quantize_config.desc_act)
safetensors_metadata['gptq_damp_percent'] = str(self.quantize_config.damp_percent)
safe_save(state_dict, join(save_dir, model_save_name), safetensors_metadata)
else: else:
model_save_name = model_base_name + ".bin" model_save_name += ".bin"
torch.save(self.model.state_dict(), join(save_dir, model_save_name)) torch.save(self.model.state_dict(), join(save_dir, model_save_name))
self.model.config.save_pretrained(save_dir) self.model.config.save_pretrained(save_dir)
self.quantize_config.save_pretrained(save_dir) self.quantize_config.save_pretrained(save_dir)
self.quantize_config.model_name_or_path = save_dir
self.quantize_config.model_file_base_name = model_base_name
def save_pretrained(self, save_dir: str, use_safetensors: bool = False, safetensors_metadata: Optional[Dict[str, str]] = None, **kwargs): def save_pretrained(self, save_dir: str, use_safetensors: bool = False, **kwargs):
"""alias of save_quantized""" """alias of save_quantized"""
logger.warning("you are using save_pretrained, which will re-direct to save_quantized.") logger.warning("you are using save_pretrained, which will re-direct to save_quantized.")
self.save_quantized(save_dir, use_safetensors, safetensors_metadata) self.save_quantized(save_dir, use_safetensors)
@classmethod @classmethod
def from_pretrained( def from_pretrained(
@ -597,8 +408,6 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
pretrained_model_name_or_path: str, pretrained_model_name_or_path: str,
quantize_config: BaseQuantizeConfig, quantize_config: BaseQuantizeConfig,
max_memory: Optional[dict] = None, max_memory: Optional[dict] = None,
trust_remote_code: bool = False,
torch_dtype: torch.dtype = torch.float16,
**model_init_kwargs **model_init_kwargs
): ):
"""load un-quantized pretrained model to cpu""" """load un-quantized pretrained model to cpu"""
@ -613,35 +422,13 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
torch.nn.init.uniform_ = skip torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip torch.nn.init.normal_ = skip
# Parameters related to loading from Hugging Face Hub config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
cache_dir = model_init_kwargs.pop("cache_dir", None)
force_download = model_init_kwargs.pop("force_download", False)
resume_download = model_init_kwargs.pop("resume_download", False)
proxies = model_init_kwargs.pop("proxies", None)
local_files_only = model_init_kwargs.pop("local_files_only", False)
use_auth_token = model_init_kwargs.pop("use_auth_token", None)
revision = model_init_kwargs.pop("revision", None)
subfolder = model_init_kwargs.pop("subfolder", "")
commit_hash = model_init_kwargs.pop("_commit_hash", None)
cached_file_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"proxies": proxies,
"resume_download": resume_download,
"local_files_only": local_files_only,
"use_auth_token": use_auth_token,
"revision": revision,
"subfolder": subfolder,
}
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True, **cached_file_kwargs)
if config.model_type not in SUPPORTED_MODELS: if config.model_type not in SUPPORTED_MODELS:
raise TypeError(f"{config.model_type} isn't supported yet.") raise TypeError(f"{config.model_type} isn't supported yet.")
# enforce some values despite user specified # enforce some values despite user specified
model_init_kwargs["torch_dtype"] = torch_dtype model_init_kwargs["torch_dtype"] = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
model_init_kwargs["trust_remote_code"] = trust_remote_code model_init_kwargs["trust_remote_code"] = True
if max_memory: if max_memory:
if "disk" in max_memory: if "disk" in max_memory:
raise NotImplementedError("disk offload not support yet.") raise NotImplementedError("disk offload not support yet.")
@ -671,9 +458,7 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
torch.cuda.empty_cache() torch.cuda.empty_cache()
merged_kwargs = {**model_init_kwargs, **cached_file_kwargs} model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, **model_init_kwargs)
model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, **merged_kwargs)
model_config = model.config.to_dict() model_config = model.config.to_dict()
seq_len_keys = ["max_position_embeddings", "seq_length", "n_positions"] seq_len_keys = ["max_position_embeddings", "seq_length", "n_positions"]
if any([k in model_config for k in seq_len_keys]): if any([k in model_config for k in seq_len_keys]):
@ -691,283 +476,75 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
@classmethod @classmethod
def from_quantized( def from_quantized(
cls, cls,
model_name_or_path: Optional[str], save_dir: str,
device_map: Optional[Union[str, Dict[str, Union[int, str]]]] = None, device: str = "cpu",
max_memory: Optional[dict] = None, use_safetensors: bool = False,
device: Optional[Union[str, int]] = None,
low_cpu_mem_usage: bool = False,
use_triton: bool = False, use_triton: bool = False,
use_qigen: bool = False, max_memory: Optional[dict] = None,
torch_dtype: Optional[torch.dtype] = None, device_map: Optional[str] = None,
inject_fused_attention: bool = True,
inject_fused_mlp: bool = True,
use_cuda_fp16: bool = True,
quantize_config: Optional[BaseQuantizeConfig] = None, quantize_config: Optional[BaseQuantizeConfig] = None,
model_basename: Optional[str] = None, model_basename: Optional[str] = None,
use_safetensors: bool = False, trust_remote_code: bool = False
trust_remote_code: bool = False,
warmup_triton: bool = False,
trainable: bool = False,
disable_exllama: bool = True,
disable_exllamav2: bool = False,
**kwargs
): ):
"""load quantized model from local disk""" """load quantized model from local disk"""
if use_triton:
# Parameters related to loading from Hugging Face Hub from ..nn_modules.qlinear_triton import autotune_warmup_linear
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", "")
commit_hash = kwargs.pop("_commit_hash", None)
cached_file_kwargs = { logger.warning("use_triton will force moving the whole model to GPU, make sure you have enough VRAM.")
"cache_dir": cache_dir, device = "cuda:0"
"force_download": force_download,
"proxies": proxies,
"resume_download": resume_download,
"local_files_only": local_files_only,
"use_auth_token": use_auth_token,
"revision": revision,
"subfolder": subfolder,
"_raise_exceptions_for_missing_entries": False,
"_commit_hash": commit_hash,
}
if use_qigen and not QIGEN_AVAILABLE:
logger.warning("Qigen is not installed, reset use_qigen to False.")
use_qigen = False
if use_triton and not TRITON_AVAILABLE:
logger.warning("Triton is not installed, reset use_triton to False.")
use_triton = False
if not disable_exllama and not EXLLAMA_KERNELS_AVAILABLE:
logger.warning(
"Exllama kernel is not installed, reset disable_exllama to True. "
"This may because you installed auto_gptq using a pre-build wheel "
"on Windows, in which exllama_kernels are not compiled. To use "
"exllama_kernels to further speedup inference, you can re-install "
"auto_gptq from source."
)
disable_exllama = True
if not disable_exllamav2 and not EXLLAMAV2_KERNELS_AVAILABLE:
logger.warning(
"Exllamav2 kernel is not installed, reset disable_exllamav2 to True. "
"This may because you installed auto_gptq using a pre-build wheel "
"on Windows, in which exllama_kernels are not compiled. To use "
"exllama_kernels to further speedup inference, you can re-install "
"auto_gptq from source."
)
disable_exllamav2 = True
if not AUTOGPTQ_CUDA_AVAILABLE:
logger.warning(
"CUDA kernels for auto_gptq are not installed, this will result in "
"very slow inference speed. This may because:\n"
"1. You disabled CUDA extensions compilation by setting BUILD_CUDA_EXT=0 when install auto_gptq from source.\n"
"2. You are using pytorch without CUDA support.\n"
"3. CUDA and nvcc are not installed in your device."
)
if use_qigen and QIGEN_AVAILABLE:
logger.warning("QIgen is active. Ignores all settings related to cuda.")
inject_fused_attention = False
inject_fused_mlp = False
use_triton = False
disable_exllama = True
disable_exllamav2 = True
if not disable_exllamav2 and not disable_exllama:
logger.warning(
"You have activated both exllama and exllamav2 kernel. Setting disable_exllama to True and keeping disable_exllamav2 to False"
)
disable_exllama = True
# == step1: prepare configs and file names == #
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=trust_remote_code, **cached_file_kwargs)
config = AutoConfig.from_pretrained(save_dir, trust_remote_code=trust_remote_code)
if config.model_type not in SUPPORTED_MODELS: if config.model_type not in SUPPORTED_MODELS:
raise TypeError(f"{config.model_type} isn't supported yet.") raise TypeError(f"{config.model_type} isn't supported yet.")
if quantize_config is None: if quantize_config is None:
quantize_config = BaseQuantizeConfig.from_pretrained(model_name_or_path, **cached_file_kwargs, **kwargs) quantize_config = BaseQuantizeConfig.from_pretrained(save_dir)
if model_basename is None: if model_basename is None:
if quantize_config.model_file_base_name: model_basename = f"gptq_model-{quantize_config.bits}bit-{quantize_config.group_size}g"
model_basename = quantize_config.model_file_base_name
else: model_save_name = join(save_dir, model_basename)
model_basename = f"gptq_model-{quantize_config.bits}bit-{quantize_config.group_size}g"
quantize_config.model_name_or_path = model_name_or_path
quantize_config.model_file_base_name = model_basename
extensions = []
if use_safetensors: if use_safetensors:
extensions.append(".safetensors") model_save_name += ".safetensors"
else: else:
extensions += [".bin", ".pt"] model_save_name += ".bin"
model_name_or_path = str(model_name_or_path) if not isfile(model_save_name):
is_local = isdir(model_name_or_path) raise FileNotFoundError(f"Could not find model at {model_save_name}")
resolved_archive_file = None
if is_local:
model_save_name = join(model_name_or_path, model_basename)
for ext in extensions:
if isfile(model_save_name + ext):
resolved_archive_file = model_save_name + ext
break
else: # remote
for ext in extensions:
resolved_archive_file = cached_file(model_name_or_path, model_basename + ext, **cached_file_kwargs)
if resolved_archive_file is not None:
break
if resolved_archive_file is None: # Could not find a model file to use
raise FileNotFoundError(f"Could not find model in {model_name_or_path}")
model_save_name = resolved_archive_file
if (not disable_exllama or not disable_exllamav2) and trainable:
logger.warning("QuantLinear with exllama backend not support trainable mode yet, Switch to the pytorch backend.")
disable_exllama = True
disable_exllamav2 = True
elif not use_triton and trainable:
logger.warning("QuantLinear with cuda backend not support trainable mode yet, Switch to the pytorch backend.")
# == step2: convert model to gptq-model (replace Linear with QuantLinear) == #
def skip(*args, **kwargs): def skip(*args, **kwargs):
pass pass
if torch_dtype is None:
if not use_qigen:
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
if not use_qigen:
torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
transformers.modeling_utils._init_weights = False torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
init_contexts = [no_init_weights()] transformers.modeling_utils._init_weights = False
if low_cpu_mem_usage: with accelerate.init_empty_weights():
init_contexts.append(accelerate.init_empty_weights(include_buffers=False)) torch.set_default_dtype(torch.half)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=trust_remote_code)
torch.set_default_dtype(torch.float)
layers = find_layers(model)
ignore_layers = [cls.lm_head_name] + cls.outside_layer_modules
for name in list(layers.keys()):
if any([name.startswith(ignore_layer) for ignore_layer in ignore_layers]):
logger.info(f"{name} not been quantized, will be ignored when make_quant.")
del layers[name]
with ContextManagers(init_contexts): with accelerate.init_empty_weights():
model = AutoModelForCausalLM.from_config( make_quant(model, layers, quantize_config.bits, quantize_config.group_size, use_triton=use_triton, desc_act=quantize_config.desc_act)
config, model.tie_weights()
trust_remote_code=trust_remote_code,
torch_dtype=torch_dtype
)
layers = find_layers(model) if max_memory and not device_map:
ignore_layers = [cls.lm_head_name] + cls.outside_layer_modules device_map = "auto"
for name in list(layers.keys()): if not max_memory and not device_map:
if any([name.startswith(ignore_layer) for ignore_layer in ignore_layers]): device_map = {"": device}
logger.info(f"{name} not been quantized, will be ignored when make_quant.")
del layers[name]
make_quant( model = accelerate.load_checkpoint_and_dispatch(
model, model, model_save_name, device_map, max_memory, no_split_module_classes=[cls.layer_type]
layers, )
quantize_config.bits,
quantize_config.group_size,
use_triton=use_triton,
disable_exllama=disable_exllama,
disable_exllamav2=disable_exllamav2,
use_cuda_fp16=use_cuda_fp16,
desc_act=quantize_config.desc_act,
trainable=trainable
)
model.tie_weights()
# == step3: load checkpoint and dispatch == #
if isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
"'sequential'."
)
if isinstance(device_map, dict):
max_memory = None
else:
if device is None and not device_map and not max_memory:
device_map = "auto"
if device is not None:
device = torch.device(device)
if not max_memory and not device_map:
device_map = {"": device.index if device.type == "cuda" else device.type}
if not isinstance(device_map, dict) and device_map != "sequential":
max_memory = accelerate.utils.get_balanced_memory(
model=model,
max_memory=max_memory,
no_split_module_classes=[cls.layer_type],
low_zero=(device_map == "balanced_low_0")
)
if not isinstance(device_map, dict):
device_map = accelerate.infer_auto_device_map(
model,
max_memory=max_memory,
no_split_module_classes=[cls.layer_type]
)
if low_cpu_mem_usage:
make_sure_no_tensor_in_meta_device(model, use_triton, quantize_config.desc_act, quantize_config.group_size, bits=quantize_config.bits)
accelerate.utils.modeling.load_checkpoint_in_model(
model,
checkpoint=model_save_name,
device_map=device_map,
offload_state_dict=True,
offload_buffers=True
)
model = simple_dispatch_model(model, device_map)
else:
if quantize_config.desc_act:
NotImplementedError('desc_act=True is not yet supported.')
model = AutoModelForCausalLM.from_config(
config,
trust_remote_code=trust_remote_code,
torch_dtype=torch_dtype
)
layers = find_layers(model)
ignore_layers = [cls.lm_head_name] + cls.outside_layer_modules
for name in list(layers.keys()):
if any([name.startswith(ignore_layer) for ignore_layer in ignore_layers]):
logger.info(f"{name} not been quantized, will be ignored when make_quant.")
del layers[name]
if model_save_name.endswith('.safetensors'):
checkpoint = safe_load(model_save_name)
else:
checkpoint = torch.load(model_save_name)
make_quant(
model,
layers,
quantize_config.bits,
quantize_config.group_size,
use_triton=use_triton,
disable_exllama=disable_exllama,
disable_exllamav2=disable_exllamav2,
use_cuda_fp16=use_cuda_fp16,
desc_act=quantize_config.desc_act,
trainable=trainable,
use_qigen=True
)
preprocess_checkpoint_qigen(
model,
layers,
quantize_config.bits,
quantize_config.group_size,
checkpoint
)
model.load_state_dict(checkpoint)
# == step4: set seqlen == #
model_config = model.config.to_dict() model_config = model.config.to_dict()
seq_len_keys = ["max_position_embeddings", "seq_length", "n_positions"] seq_len_keys = ["max_position_embeddings", "seq_length", "n_positions"]
if any([k in model_config for k in seq_len_keys]): if any([k in model_config for k in seq_len_keys]):
@ -979,94 +556,12 @@ class BaseGPTQForCausalLM(nn.Module, PushToHubMixin):
logger.warning("can't get model's sequence length from model config, will set to 4096.") logger.warning("can't get model's sequence length from model config, will set to 4096.")
model.seqlen = 4096 model.seqlen = 4096
# == step5: (optional) inject optimized module == #
if inject_fused_attention:
if cls.fused_attn_module_type is None:
inject_fused_attention = False
logger.warning(f"{cls.__name__} hasn't fused attention module yet, will skip inject fused attention.")
else:
cls.fused_attn_module_type.inject_to_model(
model,
use_triton=use_triton,
group_size=quantize_config.group_size,
use_cuda_fp16=use_cuda_fp16,
desc_act=quantize_config.desc_act,
trainable=trainable,
bits=quantize_config.bits,
disable_exllama=disable_exllama,
disable_exllamav2=disable_exllamav2
)
if inject_fused_mlp:
if cls.fused_mlp_module_type is None:
inject_fused_mlp = False
logger.warning(f"{cls.__name__} hasn't fused mlp module yet, will skip inject fused mlp.")
else:
cls.fused_mlp_module_type.inject_to_model(
model,
use_triton=use_triton
)
# Any post-initialization that require device information, for example buffers initialization on device.
model = autogptq_post_init(model, use_act_order=quantize_config.desc_act)
model.eval() model.eval()
# == step6: (optional) warmup triton == #
if use_triton and warmup_triton:
from ..nn_modules.qlinear.qlinear_triton import QuantLinear
QuantLinear.warmup(model, seqlen=model.seqlen)
if inject_fused_mlp and cls.fused_mlp_module_type is not None: if use_triton:
cls.fused_mlp_module_type.warmup(model, seqlen=model.seqlen) autotune_warmup_linear(model, seqlen=model.seqlen)
# == step7: make model compatible with peft return cls(model, True, quantize_config)
cls.make_sure_compatible_with_peft(
model, use_triton, quantize_config.desc_act, quantize_config.group_size, bits=quantize_config.bits
)
return cls(
model,
True,
quantize_config,
is_triton_backend=use_triton,
injected_fused_attention=inject_fused_attention,
injected_fused_mlp=inject_fused_mlp and use_triton,
trainable=trainable
)
def warmup_triton(self, enabled: bool = True):
if not enabled:
return
if not TRITON_AVAILABLE:
logger.warning(f"triton is not available, skip warmup stage directly.")
return
from ..nn_modules.qlinear.qlinear_triton import QuantLinear
QuantLinear.warmup(self.model, seqlen=self.model.seqlen)
if self.fused_mlp_module_type is not None:
self.fused_mlp_module_type.warmup(self.model, seqlen=self.model.seqlen)
def enable_trainable_mode(self, enabled: bool = True):
if not self.is_triton_backend and enabled:
raise NotImplementedError("For now, trainable mode only supports triton backend.")
for n, m in self.model.named_modules():
if hasattr(m, "trainable"):
setattr(m, "trainable", enabled)
def disable_trainable_mode(self):
self.enable_trainable_mode(enabled=False)
@staticmethod
def make_sure_compatible_with_peft(model: PreTrainedModel, use_triton: bool, desc_act: bool, group_size: int, bits: int):
GeneralQuantLinear.inject_to_model(
model,
dynamically_import_QuantLinear(use_triton, desc_act, group_size, bits=bits)
)
def __getattr__(self, item):
try:
return super().__getattr__(item)
except:
return getattr(self.model, item)
__all__ = ["BaseGPTQForCausalLM", "BaseQuantizeConfig"] __all__ = ["BaseGPTQForCausalLM", "BaseQuantizeConfig"]

View file

@ -1,36 +1,13 @@
from packaging.version import parse as parse_version from packaging.version import parse as parse_version
from torch import device from torch import device
from transformers import __version__ as transformers_version
from ..utils.import_utils import compare_transformers_version
CPU = device("cpu") CPU = device("cpu")
CUDA_0 = device("cuda:0") CUDA_0 = device("cuda:0")
SUPPORTED_MODELS = [ SUPPORTED_MODELS = ["bloom", "gptj", "gpt2", "gpt_neox", "opt", "moss"]
"bloom", if parse_version(transformers_version) >= parse_version("v4.28.0"):
"gptj",
"gpt2",
"gpt_neox",
"opt",
"moss",
"gpt_bigcode",
"codegen",
"RefinedWebModel",
"RefinedWeb",
"baichuan",
"internlm",
"qwen",
"mpt",
]
if compare_transformers_version("v4.28.0", op="ge"):
SUPPORTED_MODELS.append("llama") SUPPORTED_MODELS.append("llama")
if compare_transformers_version("v4.33.0", op="ge"):
SUPPORTED_MODELS.append("falcon")
if compare_transformers_version("v4.34.0", op="ge"):
SUPPORTED_MODELS.append("mistral")
__all__ = ["CPU", "CUDA_0", "SUPPORTED_MODELS"]
EXLLAMA_DEFAULT_MAX_INPUT_LENGTH = 2048
__all__ = ["CPU", "CUDA_0", "SUPPORTED_MODELS", "EXLLAMA_DEFAULT_MAX_INPUT_LENGTH"]

View file

@ -1,14 +1,13 @@
from logging import getLogger from logging import getLogger
from typing import Union, Optional from typing import Union
import accelerate
import torch import torch
import torch.nn as nn import torch.nn as nn
from transformers import AutoConfig from transformers import AutoConfig
import transformers import transformers
from ._const import SUPPORTED_MODELS, CPU, CUDA_0, EXLLAMA_DEFAULT_MAX_INPUT_LENGTH from ._const import SUPPORTED_MODELS, CPU, CUDA_0
from ..utils.import_utils import dynamically_import_QuantLinear
logger = getLogger(__name__) logger = getLogger(__name__)
@ -28,42 +27,29 @@ def move_to_device(obj: Union[torch.Tensor, nn.Module], device: torch.device):
def find_layers(module, layers=None, name=''): def find_layers(module, layers=None, name=''):
if not layers: if not layers:
layers = [transformers.pytorch_utils.Conv1D, nn.Conv2d, nn.Linear] layers = [transformers.pytorch_utils.Conv1D, nn.Conv2d, nn.Linear]
for layer in layers:
if isinstance(module,layer): if type(module) in layers:
return {name: module} return {name: module}
res = {} res = {}
for name1, child in module.named_children(): for name1, child in module.named_children():
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1)) res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
return res return res
def get_module_by_name_prefix(model, module_name: str): def get_module_by_name(model, module_name: str):
for name, module in model.named_modules(): for name, module in model.named_modules():
if name.startswith(module_name): if name.startswith(module_name):
return module return module
def get_module_by_name_suffix(model, module_name: str): def make_quant(module, names, bits, groupsize, name='', use_triton=False, desc_act=False):
for name, module in model.named_modules(): if use_triton:
if name.endswith(module_name): from ..nn_modules.qlinear_triton import QuantLinear
return module else:
if not desc_act or groupsize == -1:
from ..nn_modules.qlinear_old import QuantLinear
def make_quant( else:
module, from ..nn_modules.qlinear import QuantLinear
names,
bits,
group_size,
name='',
use_triton: bool = False,
disable_exllama: bool = True,
disable_exllamav2: bool = False,
use_qigen: bool = False,
use_cuda_fp16: bool = True,
desc_act: bool = False,
trainable: bool = False
):
QuantLinear = dynamically_import_QuantLinear(use_triton=use_triton, desc_act=desc_act, group_size=group_size, bits=bits, disable_exllama=disable_exllama, disable_exllamav2=disable_exllamav2, use_qigen=use_qigen)
if isinstance(module, QuantLinear): if isinstance(module, QuantLinear):
return return
@ -73,109 +59,21 @@ def make_quant(
if name1 in names: if name1 in names:
ori_layer_device = get_device(getattr(module, attr)) ori_layer_device = get_device(getattr(module, attr))
delattr(module, attr) delattr(module, attr)
if isinstance(tmp,nn.Linear): if type(tmp) == nn.Linear:
in_features = tmp.in_features in_features = tmp.in_features
out_features = tmp.out_features out_features = tmp.out_features
elif isinstance(tmp,nn.Conv2d): elif type(tmp) == nn.Conv2d:
in_features = tmp.in_channels in_features = tmp.in_channels
out_features = tmp.out_channels out_features = tmp.out_channels
elif isinstance(tmp,transformers.pytorch_utils.Conv1D): elif type(tmp) == transformers.pytorch_utils.Conv1D:
in_features = tmp.weight.shape[0] in_features = tmp.weight.shape[0]
out_features = tmp.weight.shape[1] out_features = tmp.weight.shape[1]
if (not(desc_act) or group_size == -1) and not use_triton and not use_qigen: new_layer = QuantLinear(bits, groupsize, in_features, out_features, tmp.bias is not None)
new_layer = QuantLinear(
bits, group_size, in_features, out_features, True, use_cuda_fp16=use_cuda_fp16, trainable=trainable
)
else:
new_layer = QuantLinear(bits, group_size, in_features, out_features, True, trainable=trainable)
new_layer.device = ori_layer_device new_layer.device = ori_layer_device
setattr(module, attr, new_layer.to(ori_layer_device)) setattr(module, attr, new_layer.to(ori_layer_device))
for name1, child in module.named_children(): for name1, child in module.named_children():
make_quant( make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1, use_triton=use_triton, desc_act=desc_act)
child,
names,
bits,
group_size,
name + '.' + name1 if name != '' else name1,
use_triton=use_triton,
use_cuda_fp16=use_cuda_fp16,
desc_act=desc_act,
trainable=trainable,
disable_exllama=disable_exllama,
disable_exllamav2=disable_exllamav2,
use_qigen=use_qigen
)
def preprocess_checkpoint_qigen(
module,
names,
bits,
group_size,
checkpoint,
name='',
):
try:
import cQIGen as qinfer
except ImportError:
logger.error('cQIGen not installed.')
raise
QuantLinear = dynamically_import_QuantLinear(use_triton=False, desc_act=False, group_size=group_size, bits=bits, disable_exllama=False, use_qigen=True)
if isinstance(module, QuantLinear):
in_features = module.infeatures
out_features = module.outfeatures
zeros = checkpoint[name + '.qzeros']
scales = checkpoint[name + '.scales'].float()
if zeros.dtype != torch.float32:
new_zeros = torch.zeros_like(scales).float().contiguous()
if bits == 4:
qinfer.unpack_zeros4(zeros, new_zeros, new_zeros.shape[0], new_zeros.shape[1])
elif bits == 2:
qinfer.unpack_zeros2(zeros, new_zeros, new_zeros.shape[0], new_zeros.shape[1])
elif bits == 3:
logger.info("Unpacking zeros for 3 bits")
new_scales = scales.contiguous()
else:
if scales.shape[1] != out_features:
new_scales = scales.transpose(0,1).contiguous()
else:
new_scales = scales.contiguous()
if zeros.shape[1] != out_features:
new_zeros = zeros.transpose(0,1).contiguous()
else:
new_zeros = zeros.contiguous()
checkpoint[name + '.zeros'],checkpoint[name + '.scales'] = new_zeros, new_scales
del checkpoint[name + '.qzeros']
del checkpoint[name + '.g_idx']
if name + '.bias' in checkpoint:
checkpoint[name + '.bias'] = checkpoint[name + '.bias'].float()
else:
checkpoint[name + '.bias'] = torch.zeros(out_features)
checkpoint_qweight = checkpoint[name + '.qweight'].int().contiguous()
if bits == 4:
qweight = torch.zeros(int(in_features // 8 * out_features)).int().contiguous()
qinfer.pack4(checkpoint_qweight, qweight, in_features // 8, out_features, module.mb, module.tb, module.cutoff)# * (module.tt//tb))
elif bits == 3:
qweight = torch.zeros(int(in_features // 32 * 3 * out_features)).int().contiguous()
qinfer.pack3(checkpoint_qweight, qweight, in_features // 32 * 3, out_features, module.mb // 32 * 3, module.tb, module.cutoff)
elif bits == 2:
qweight = torch.zeros(int(in_features // 16 * out_features)).int().contiguous()
qinfer.pack2(checkpoint_qweight, qweight, in_features // 16, out_features, module.mb, module.tb, module.cutoff)# * (module.tt//tb))
checkpoint[name + '.qweight'] = qweight
return
for name1, child in module.named_children():
preprocess_checkpoint_qigen(
child,
names,
bits,
group_size,
checkpoint,
name + '.' + name1 if name != '' else name1,
)
def pack_model( def pack_model(
model, model,
@ -183,20 +81,24 @@ def pack_model(
bits, bits,
group_size, group_size,
use_triton=False, use_triton=False,
use_cuda_fp16=True,
desc_act=False, desc_act=False,
warmup_triton: bool = False, autotune_warmup: bool = False,
force_layer_back_to_cpu: bool = False force_layer_back_to_cpu: bool = False
): ):
QuantLinear = dynamically_import_QuantLinear(use_triton=use_triton, desc_act=desc_act, group_size=group_size, bits=bits, disable_exllama=False, disable_exllamav2=True) if use_triton:
from ..nn_modules.qlinear_triton import QuantLinear, autotune_warmup_linear
else:
if not desc_act or group_size == -1:
from ..nn_modules.qlinear_old import QuantLinear
else:
from ..nn_modules.qlinear import QuantLinear
if force_layer_back_to_cpu: if force_layer_back_to_cpu:
model.to(CPU) model.to(CPU)
logger.info('Packing model...') logger.info('Packing model...')
layers = find_layers(model) layers = find_layers(model)
layers = {n: layers[n] for n in quantizers} layers = {n: layers[n] for n in quantizers}
make_quant(model, quantizers, bits, group_size, use_triton=use_triton, use_cuda_fp16=use_cuda_fp16, desc_act=desc_act, disable_exllama=False, disable_exllamav2=True) make_quant(model, quantizers, bits, group_size, use_triton=use_triton)
qlayers = find_layers(model, [QuantLinear]) qlayers = find_layers(model, [QuantLinear])
for name in qlayers: for name in qlayers:
logger.info(name) logger.info(name)
@ -209,185 +111,27 @@ def pack_model(
qlayers[name].to(layer_device) qlayers[name].to(layer_device)
logger.info('Model packed.') logger.info('Model packed.')
if use_triton and warmup_triton: if use_triton and autotune_warmup:
logger.warning( logger.warning(
"using autotune_warmup will move model to GPU, make sure you have enough VRAM to load the whole model." "using autotune_warmup will move model to GPU, make sure you have enough VRAM to load the whole model."
) )
QuantLinear.warmup(model.to(CUDA_0), seqlen=model.seqlen) autotune_warmup_linear(model.to(CUDA_0), seqlen=model.seqlen)
def check_and_get_model_type(model_dir, trust_remote_code=False): def check_and_get_model_type(model_dir):
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=trust_remote_code) config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
if config.model_type not in SUPPORTED_MODELS: if config.model_type not in SUPPORTED_MODELS:
raise TypeError(f"{config.model_type} isn't supported yet.") raise TypeError(f"{config.model_type} isn't supported yet.")
model_type = config.model_type model_type = config.model_type
return model_type return model_type
def simple_dispatch_model(model, device_map):
from accelerate.hooks import add_hook_to_module, AlignDevicesHook
if "" in device_map:
d = device_map[""]
model = model.to(torch.device(d))
model.hf_device_map = device_map
return model
tied_params = accelerate.utils.modeling.find_tied_parameters(model)
if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}:
main_device = "cpu"
else:
main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0]
cpu_offload_group = [(n, d) for n, d in device_map.items() if d == "cpu"]
prev_hook = None
for idx, (n, d) in enumerate(cpu_offload_group):
m = get_module_by_name_suffix(model, n)
_, prev_hook = accelerate.cpu_offload_with_hook(m, execution_device=main_device, prev_module_hook=prev_hook)
# set first cpu offload module's prev_module_hook to the last cpu offload module's hook
if len(cpu_offload_group) > 1:
get_module_by_name_suffix(model, cpu_offload_group[0][0])._hf_hook.prev_module_hook = prev_hook
for n, d in device_map.items():
m = get_module_by_name_suffix(model, n)
if d != "cpu":
d = torch.device(d)
hook = AlignDevicesHook(d, io_same_device=True, place_submodules=True)
add_hook_to_module(m, hook)
accelerate.utils.modeling.retie_parameters(model, tied_params)
model.hf_device_map = device_map
return model
def autogptq_post_init(model, use_act_order: bool, max_input_length: Optional[int] = None):
"""
The max_input_length argument is specific to the exllama backend, that requires to initialize a buffer temp_state.
"""
device_to_buffers_size = {}
model_uses_exllama = False
for name, submodule in model.named_modules():
if hasattr(submodule, "QUANT_TYPE") and submodule.QUANT_TYPE == "exllama":
model_uses_exllama = True
device = submodule.qweight.device
if device not in device_to_buffers_size:
device_to_buffers_size[device] = {
"max_dq_buffer_size": 1,
"max_inner_outer_dim": 1
}
if not use_act_order:
submodule._use_act_order = False
else:
submodule._use_act_order = True
# Disable this heuristic for detecting act_order, but it could be used instead of the config.
"""
if submodule.g_idx is None:
submodule.act_order = False
elif submodule.g_idx is not None and ((submodule.g_idx == 0).all() or torch.equal(submodule.g_idx.cpu(), torch.tensor([i // submodule.group_size for i in range(submodule.g_idx.shape[0])], dtype=torch.int32))):
submodule.g_idx = None
submodule.act_order = False
else:
submodule.act_order = True
"""
device_to_buffers_size[device]["max_dq_buffer_size"] = max(device_to_buffers_size[device]["max_dq_buffer_size"], submodule.qweight.numel() * 8)
if use_act_order:
device_to_buffers_size[device]["max_inner_outer_dim"] = max(device_to_buffers_size[device]["max_inner_outer_dim"], submodule.infeatures, submodule.outfeatures)
if model_uses_exllama:
# To be honest this is quite ugly, not proud of this.
from exllama_kernels import prepare_buffers, set_tuning_params
device_to_buffers = {}
if use_act_order:
if max_input_length is None:
max_input_len = EXLLAMA_DEFAULT_MAX_INPUT_LENGTH
else:
max_input_len = max_input_length
else:
if max_input_length is not None:
logger.info("Using exllama backend without act-order, the parameter max_input_length was set although not needed, it will be ignored.")
max_input_len = 1
for device, buffers_size in device_to_buffers_size.items():
# The temp_state buffer is required to reorder X in the act-order case.
# The temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill.
device_to_buffers[device] = {
"temp_state": torch.zeros((max_input_len, buffers_size["max_inner_outer_dim"]), dtype=torch.float16, device=device),
"temp_dq": torch.zeros((1, buffers_size["max_dq_buffer_size"]), dtype=torch.float16, device=device),
"max_dq_buffer_size": buffers_size["max_dq_buffer_size"],
"max_inner_outer_dim": buffers_size["max_inner_outer_dim"],
}
# Buffers need to be persistent to avoid any bug.
model.device_to_buffers = device_to_buffers
for device, buffers in model.device_to_buffers.items():
prepare_buffers(device, buffers["temp_state"], buffers["temp_dq"])
# Using the default from exllama repo here.
matmul_recons_thd = 8
matmul_fused_remap = False
matmul_no_half2 = False
set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2)
# The buffers need to have been initialized first before calling make_q4.
for name, submodule in model.named_modules():
if hasattr(submodule, "QUANT_TYPE") and submodule.QUANT_TYPE == "exllama":
submodule.post_init()
## exllamav2
fixed_bytes = {}
model_uses_exllamav2 = False
for _, submodule in model.named_modules():
if hasattr(submodule, "QUANT_TYPE") and submodule.QUANT_TYPE == "exllamav2":
model_uses_exllamav2 = True
device = submodule.qweight.device
scratch_fixed = submodule.scratch_space_fixed()
fixed_bytes[device] = max(scratch_fixed, fixed_bytes.get(device,0))
if model_uses_exllamav2:
from ..nn_modules.qlinear.qlinear_exllamav2 import ExLlamaV2DeviceTensors
device_tensors = {}
for device, scratch_bytes in fixed_bytes.items():
device_tensors[device] = ExLlamaV2DeviceTensors(device.index, scratch_bytes)
# have persistent buffers, otherwise we will get OOM
model.device_tensors = device_tensors
for _, submodule in model.named_modules():
if hasattr(submodule, "QUANT_TYPE") and submodule.QUANT_TYPE == "exllamav2":
device = submodule.qweight.device
submodule.post_init(temp_dq = model.device_tensors[device])
torch.cuda.empty_cache()
return model
def make_sure_no_tensor_in_meta_device(model, use_triton, desc_act, group_size, bits: int):
QuantLinear = dynamically_import_QuantLinear(use_triton, desc_act, group_size, bits=bits)
for n, m in model.named_modules():
if isinstance(m, QuantLinear) and m.bias.device == torch.device("meta"):
m.register_buffer('bias', torch.zeros((m.outfeatures), dtype=torch.float16, device="cpu"))
__all__ = [ __all__ = [
"get_device", "get_device",
"move_to_device", "move_to_device",
"find_layers", "find_layers",
"get_module_by_name_prefix", "get_module_by_name",
"get_module_by_name_suffix",
"make_quant", "make_quant",
"preprocess_checkpoint_qigen",
"pack_model", "pack_model",
"autogptq_post_init", "check_and_get_model_type"
"check_and_get_model_type",
"simple_dispatch_model",
"make_sure_no_tensor_in_meta_device"
] ]

View file

@ -1,23 +1,15 @@
from inspect import signature from typing import Optional
from typing import Dict, Optional, Union
from ._base import BaseQuantizeConfig, BaseGPTQForCausalLM from ._base import BaseQuantizeConfig, BaseGPTQForCausalLM
from ._utils import check_and_get_model_type from ._utils import check_and_get_model_type
from .bloom import BloomGPTQForCausalLM from .bloom import BloomGPTQForCausalLM
from .codegen import CodeGenGPTQForCausalLM
from .gpt_neox import GPTNeoXGPTQForCausalLM from .gpt_neox import GPTNeoXGPTQForCausalLM
from .gptj import GPTJGPTQForCausalLM from .gptj import GPTJGPTQForCausalLM
from .gpt2 import GPT2GPTQForCausalLM from .gpt2 import GPT2GPTQForCausalLM
from .llama import LlamaGPTQForCausalLM from .llama import LlamaGPTQForCausalLM
from .moss import MOSSGPTQForCausalLM from .moss import MOSSGPTQForCausalLM
from .opt import OPTGPTQForCausalLM from .opt import OPTGPTQForCausalLM
from .rw import RWGPTQForCausalLM
from .gpt_bigcode import GPTBigCodeGPTQForCausalLM
from .baichuan import BaiChuanGPTQForCausalLM
from .internlm import InternLMGPTQForCausalLM
from .qwen import QwenGPTQForCausalLM
from .mistral import MistralGPTQForCausalLM
from .mpt import MPTGPTQForCausalLM
GPTQ_CAUSAL_LM_MODEL_MAP = { GPTQ_CAUSAL_LM_MODEL_MAP = {
"bloom": BloomGPTQForCausalLM, "bloom": BloomGPTQForCausalLM,
@ -26,17 +18,7 @@ GPTQ_CAUSAL_LM_MODEL_MAP = {
"gpt2": GPT2GPTQForCausalLM, "gpt2": GPT2GPTQForCausalLM,
"llama": LlamaGPTQForCausalLM, "llama": LlamaGPTQForCausalLM,
"opt": OPTGPTQForCausalLM, "opt": OPTGPTQForCausalLM,
"moss": MOSSGPTQForCausalLM, "moss": MOSSGPTQForCausalLM
"gpt_bigcode": GPTBigCodeGPTQForCausalLM,
"codegen": CodeGenGPTQForCausalLM,
"RefinedWebModel": RWGPTQForCausalLM,
"RefinedWeb": RWGPTQForCausalLM,
"falcon": RWGPTQForCausalLM,
"baichuan": BaiChuanGPTQForCausalLM,
"internlm": InternLMGPTQForCausalLM,
"qwen": QwenGPTQForCausalLM,
"mistral": MistralGPTQForCausalLM,
"mpt": MPTGPTQForCausalLM,
} }
@ -54,82 +36,40 @@ class AutoGPTQForCausalLM:
pretrained_model_name_or_path: str, pretrained_model_name_or_path: str,
quantize_config: BaseQuantizeConfig, quantize_config: BaseQuantizeConfig,
max_memory: Optional[dict] = None, max_memory: Optional[dict] = None,
trust_remote_code: bool = False,
**model_init_kwargs **model_init_kwargs
) -> BaseGPTQForCausalLM: ) -> BaseGPTQForCausalLM:
model_type = check_and_get_model_type( model_type = check_and_get_model_type(pretrained_model_name_or_path)
pretrained_model_name_or_path, trust_remote_code
)
return GPTQ_CAUSAL_LM_MODEL_MAP[model_type].from_pretrained( return GPTQ_CAUSAL_LM_MODEL_MAP[model_type].from_pretrained(
pretrained_model_name_or_path=pretrained_model_name_or_path, pretrained_model_name_or_path=pretrained_model_name_or_path,
quantize_config=quantize_config, quantize_config=quantize_config,
max_memory=max_memory, max_memory=max_memory,
trust_remote_code=trust_remote_code,
**model_init_kwargs **model_init_kwargs
) )
@classmethod @classmethod
def from_quantized( def from_quantized(
cls, cls,
model_name_or_path: Optional[str], save_dir: str,
device_map: Optional[Union[str, Dict[str, Union[str, int]]]] = None, device: str = "cpu",
max_memory: Optional[dict] = None, use_safetensors: bool = False,
device: Optional[Union[str, int]] = None,
low_cpu_mem_usage: bool = False,
use_triton: bool = False, use_triton: bool = False,
inject_fused_attention: bool = True, max_memory: Optional[dict] = None,
inject_fused_mlp: bool = True, device_map: Optional[str] = None,
use_cuda_fp16: bool = True,
quantize_config: Optional[BaseQuantizeConfig] = None, quantize_config: Optional[BaseQuantizeConfig] = None,
model_basename: Optional[str] = None, model_basename: Optional[str] = None,
use_safetensors: bool = False, trust_remote_code: bool = False
trust_remote_code: bool = False,
warmup_triton: bool = False,
trainable: bool = False,
disable_exllama: bool = True,
disable_exllamav2: bool = False,
**kwargs
) -> BaseGPTQForCausalLM: ) -> BaseGPTQForCausalLM:
model_type = check_and_get_model_type(model_name_or_path, trust_remote_code) model_type = check_and_get_model_type(save_dir)
quant_func = GPTQ_CAUSAL_LM_MODEL_MAP[model_type].from_quantized return GPTQ_CAUSAL_LM_MODEL_MAP[model_type].from_quantized(
# A static list of kwargs needed for huggingface_hub save_dir=save_dir,
huggingface_kwargs = [
"cache_dir",
"force_download",
"proxies",
"resume_download",
"local_files_only",
"use_auth_token",
"revision",
"subfolder",
"_raise_exceptions_for_missing_entries",
"_commit_hash"
]
# TODO: do we need this filtering of kwargs? @PanQiWei is there a reason we can't just pass all kwargs?
keywords = {
key: kwargs[key]
for key in list(signature(quant_func).parameters.keys()) + huggingface_kwargs
if key in kwargs
}
return quant_func(
model_name_or_path=model_name_or_path,
device_map=device_map,
max_memory=max_memory,
device=device, device=device,
low_cpu_mem_usage=low_cpu_mem_usage, use_safetensors=use_safetensors,
use_triton=use_triton, use_triton=use_triton,
inject_fused_attention=inject_fused_attention, max_memory=max_memory,
inject_fused_mlp=inject_fused_mlp, device_map=device_map,
use_cuda_fp16=use_cuda_fp16,
quantize_config=quantize_config, quantize_config=quantize_config,
model_basename=model_basename, model_basename=model_basename,
use_safetensors=use_safetensors, trust_remote_code=trust_remote_code
trust_remote_code=trust_remote_code,
warmup_triton=warmup_triton,
trainable=trainable,
disable_exllama=disable_exllama,
disable_exllamav2=disable_exllamav2,
**keywords
) )

View file

@ -1,16 +0,0 @@
from ._base import *
class BaiChuanGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = "DecoderLayer"
layers_block_name = "model.layers"
outside_layer_modules = ["model.embed_tokens", "model.norm"]
inside_layer_modules = [
["self_attn.W_pack"],
["self_attn.o_proj"],
["mlp.up_proj", "mlp.gate_proj"],
["mlp.down_proj"]
]
__all__ = ["BaiChuanGPTQForCausalLM"]

View file

@ -1,16 +0,0 @@
from ._base import *
class CodeGenGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = "CodeGenBlock"
layers_block_name = "transformer.h"
outside_layer_modules = ["transformer.wte", "transformer.ln_f"]
inside_layer_modules = [
["attn.qkv_proj"],
["attn.out_proj"],
["mlp.fc_in"],
["mlp.fc_out"]
]
__all__ = ["CodeGenGPTQForCausalLM"]

View file

@ -1,17 +0,0 @@
from auto_gptq.modeling import BaseGPTQForCausalLM
class GPTBigCodeGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = "GPTBigCodeBlock"
layers_block_name = "transformer.h"
outside_layer_modules = [
"transformer.wpe", "transformer.wte", "transformer.ln_f"
]
inside_layer_modules = [
["attn.c_attn"],
["attn.c_proj"],
["mlp.c_fc"],
["mlp.c_proj"]
]
__all__ = ["GPTBigCodeGPTQForCausalLM"]

View file

@ -1,5 +1,4 @@
from ._base import * from ._base import *
from ..nn_modules.fused_gptj_attn import FusedGPTJAttentionForQuantizedModel
class GPTJGPTQForCausalLM(BaseGPTQForCausalLM): class GPTJGPTQForCausalLM(BaseGPTQForCausalLM):
@ -13,7 +12,5 @@ class GPTJGPTQForCausalLM(BaseGPTQForCausalLM):
["mlp.fc_out"] ["mlp.fc_out"]
] ]
fused_attn_module_type = FusedGPTJAttentionForQuantizedModel
__all__ = ["GPTJGPTQForCausalLM"] __all__ = ["GPTJGPTQForCausalLM"]

View file

@ -1,16 +0,0 @@
from ._base import *
class InternLMGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = "InternLMDecoderLayer"
layers_block_name = "model.layers"
outside_layer_modules = ["model.embed_tokens", "model.norm"]
inside_layer_modules = [
["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"],
["self_attn.o_proj"],
["mlp.up_proj", "mlp.gate_proj"],
["mlp.down_proj"],
]
__all__ = ["InternLMGPTQForCausalLM"]

View file

@ -1,16 +1,4 @@
from logging import getLogger
from ._base import * from ._base import *
from ..utils.import_utils import compare_transformers_version
if compare_transformers_version("v4.28.0", op="ge"):
from ..nn_modules.fused_llama_attn import FusedLlamaAttentionForQuantizedModel
from ..nn_modules.fused_llama_mlp import FusedLlamaMLPForQuantizedModel
else:
FusedLlamaAttentionForQuantizedModel = None
FusedLlamaMLPForQuantizedModel = None
logger = getLogger(__name__)
class LlamaGPTQForCausalLM(BaseGPTQForCausalLM): class LlamaGPTQForCausalLM(BaseGPTQForCausalLM):
@ -24,8 +12,5 @@ class LlamaGPTQForCausalLM(BaseGPTQForCausalLM):
["mlp.down_proj"] ["mlp.down_proj"]
] ]
fused_attn_module_type = FusedLlamaAttentionForQuantizedModel
fused_mlp_module_type = FusedLlamaMLPForQuantizedModel
__all__ = ["LlamaGPTQForCausalLM"] __all__ = ["LlamaGPTQForCausalLM"]

View file

@ -1,16 +0,0 @@
from ._base import *
class MistralGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = "MistralDecoderLayer"
layers_block_name = "model.layers"
outside_layer_modules = ["model.embed_tokens", "model.norm"]
inside_layer_modules = [
["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"],
["self_attn.o_proj"],
["mlp.up_proj", "mlp.gate_proj"],
["mlp.down_proj"],
]
__all__ = ["MistralGPTQForCausalLM"]

View file

@ -1,18 +0,0 @@
from auto_gptq.modeling import BaseGPTQForCausalLM
class MPTGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = "MPTBlock"
layers_block_name = "transformer.blocks"
outside_layer_modules = [
"transformer.wte", "transformer.norm_f"
]
inside_layer_modules = [
["attn.Wqkv"],
["attn.out_proj"],
["ffn.up_proj"],
["ffn.down_proj"]
]
__all__ = ["MPTGPTQForCausalLM"]

View file

@ -1,16 +0,0 @@
from ._base import *
class QwenGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = "QWenBlock"
layers_block_name = "transformer.h"
outside_layer_modules = ["transformer.wte", "transformer.wpe", "transformer.ln_f", "transformer.visual"]
inside_layer_modules = [
["attn.c_attn"],
["attn.c_proj"],
["mlp.w1", "mlp.w2"],
["mlp.c_proj"]
]
__all__ = ["QwenGPTQForCausalLM"]

View file

@ -1,15 +0,0 @@
from ._base import *
class RWGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = "DecoderLayer"
layers_block_name = "transformer.h"
outside_layer_modules = ["transformer.word_embeddings", "transformer.ln_f"]
inside_layer_modules = [
["self_attention.query_key_value"],
["self_attention.dense"],
["mlp.dense_h_to_4h"],
["mlp.dense_4h_to_h"]
]
__all__ = ["RWGPTQForCausalLM"]

View file

@ -1,42 +0,0 @@
from abc import abstractmethod
from logging import getLogger
import torch.nn as nn
from .triton_utils.mixin import TritonModuleMixin
logger = getLogger(__name__)
class FusedBaseModule(nn.Module, TritonModuleMixin):
@classmethod
@abstractmethod
def inject_to_model(cls, *args, **kwargs):
raise NotImplementedError()
class FusedBaseAttentionModule(FusedBaseModule):
@classmethod
@abstractmethod
def inject_to_model(
cls,
model,
use_triton=False,
group_size=-1,
use_cuda_fp16=True,
desc_act=False,
trainable=False,
**kwargs
):
raise NotImplementedError()
@classmethod
def warmup(cls, model, transpose=False, seqlen=2048):
pass
class FusedBaseMLPModule(FusedBaseModule):
@classmethod
@abstractmethod
def inject_to_model(cls, model, use_triton=False, **kwargs):
raise NotImplementedError()

View file

@ -1,303 +0,0 @@
from typing import *
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers.models.gptj.modeling_gptj import GPTJAttention
from ._fused_base import FusedBaseAttentionModule
from ..utils.import_utils import compare_pytorch_version, dynamically_import_QuantLinear
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
dim = x.shape[-1]
if seq_len is None:
seq_len = x.shape[seq_dim]
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
sinusoid_inp = (
torch.einsum("i , j -> i j", torch.arange(seq_len, dtype=torch.float), inv_freq).to(x.device).float()
)
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
def rotate_every_two(x):
x1 = x[:, :, :, ::2]
x2 = x[:, :, :, 1::2]
x = torch.stack((-x2, x1), dim=-1)
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
def duplicate_interleave(m):
"""
A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
"""
dim0 = m.shape[0]
m = m.view(-1, 1) # flatten the matrix
m = m.repeat(1, 2) # repeat all elements into the 2nd dimension
m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy
return m
def apply_rotary_pos_emb(x, sincos, offset=0):
sin, cos = (duplicate_interleave(t)[None, offset : x.shape[1] + offset, None, :] for t in sincos)
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
return (x * cos) + (rotate_every_two(x) * sin)
class FusedGPTJAttentionForQuantizedModel(FusedBaseAttentionModule):
def __init__(self, config):
super().__init__()
max_positions = config.max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
)
self.register_buffer("masked_bias", torch.tensor(-1e9))
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.attn_dropout_p = config.attn_pdrop
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.embed_dim = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_attention_heads
if self.head_dim * self.num_attention_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
f" `num_attention_heads`: {self.num_attention_heads})."
)
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.rotary_dim = config.rotary_dim
def _split_heads(self, qkv):
"""
Splits hidden dim into attn_head_size and num_attention_heads
"""
new_shape = qkv.size()[:-1] + (3, self.num_attention_heads, self.head_dim)
qkv = qkv.view(new_shape) # (batch, seq_length, 3, head, head_features)
query = qkv[:, :, 0]
key = qkv[:, :, 1]
value = qkv[:, :, 2]
return query, key, value
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden dim
"""
if len(tensor.shape) == 5:
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
elif len(tensor.shape) == 4:
tensor = tensor.permute(0, 2, 1, 3).contiguous()
else:
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
return tensor.view(new_shape)
def _attn(
self,
query,
key,
value,
attention_mask=None,
head_mask=None,
):
# compute causal mask from causal mask buffer
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length]
# Keep the attention weights computation in fp32 to avoid overflow issues
query = query.to(torch.float32)
key = key.to(torch.float32)
attn_weights = torch.matmul(query, key.transpose(-1, -2))
mask_value = torch.finfo(attn_weights.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
attn_weights = attn_weights / self.scale_attn
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights.to(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def forward(
self,
hidden_states: torch.FloatTensor,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[
Tuple[torch.Tensor, Tuple[torch.Tensor]],
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
]:
query, key, value = self._split_heads(self.qkv_proj(hidden_states))
seq_len = key.shape[1]
offset = 0
if layer_past is not None:
offset = layer_past[0].shape[-2]
seq_len += offset
if self.rotary_dim is not None:
k_rot = key[:, :, :, : self.rotary_dim]
k_pass = key[:, :, :, self.rotary_dim:]
q_rot = query[:, :, :, : self.rotary_dim]
q_pass = query[:, :, :, self.rotary_dim:]
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
key = torch.cat([k_rot, k_pass], dim=-1)
query = torch.cat([q_rot, q_pass], dim=-1)
else:
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
key = apply_rotary_pos_emb(key, sincos, offset=offset)
query = apply_rotary_pos_emb(query, sincos, offset=offset)
key = key.permute(0, 2, 1, 3)
query = query.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
is_causal = layer_past is None
if layer_past is not None:
past_key = layer_past[0]
past_value = layer_past[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
present = (key, value)
else:
present = None
# compute self-attention: V x Softmax(QK^T)
if compare_pytorch_version("v2.0.0", op="ge"):
attn_output = F.scaled_dot_product_attention(
query,
key,
value,
attn_mask=None if is_causal else attention_mask,
dropout_p=self.attn_dropout_p,
is_causal=is_causal
)
attn_weights = None
else:
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, present, (attentions)
@classmethod
def inject_to_model(
cls,
model,
use_triton=False,
group_size=-1,
use_cuda_fp16=True,
desc_act=False,
trainable=False,
bits: int = 4,
disable_exllama=True,
disable_exllamav2=False,
**kwargs
):
config = model.config
QuantLinear = dynamically_import_QuantLinear(use_triton=use_triton, desc_act=desc_act, group_size=group_size, bits=bits, disable_exllama=disable_exllama, disable_exllamav2=disable_exllamav2)
for name, m in model.named_modules():
if not isinstance(m, GPTJAttention):
continue
attn = cls(config).to(device=next(m.buffers()).device)
q_proj = m.q_proj
k_proj = m.k_proj
v_proj = m.v_proj
qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
if QuantLinear.QUANT_TYPE == "exllama":
if desc_act:
# See fused_llama_attn.py comment
raise ValueError("Exllama kernel does not support query/key/value fusion with act-order. Please either use inject_fused_attention=False or disable_exllama=True.")
else:
g_idx = None
else:
g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0)
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
qlinear_args = (
q_proj.bits,
q_proj.group_size,
q_proj.infeatures,
q_proj.outfeatures + k_proj.outfeatures + v_proj.outfeatures,
True if q_proj.bias is not None else False,
)
qlinear_kwargs = {"trainable": trainable}
if (not desc_act or group_size == -1) and not use_triton:
qlinear_kwargs["use_cuda_fp16"] = use_cuda_fp16
qkv_proj = QuantLinear(*qlinear_args, **qlinear_kwargs)
qkv_proj.qweight = qweights
qkv_proj.qzeros = qzeros
qkv_proj.scales = scales
qkv_proj.g_idx = g_idx
qkv_proj.bias = bias
if '.' in name:
parent_name = name.rsplit('.', 1)[0]
child_name = name[len(parent_name) + 1:]
parent = model.get_submodule(parent_name)
else:
parent_name = ''
parent = model
child_name = name
attn.qkv_proj = qkv_proj
attn.out_proj = m.out_proj
setattr(parent, child_name, attn)
del m
__all__ = ["FusedGPTJAttentionForQuantizedModel"]

View file

@ -1,203 +0,0 @@
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
from ._fused_base import FusedBaseAttentionModule
from ..utils.import_utils import compare_pytorch_version, dynamically_import_QuantLinear
class FusedLlamaAttentionForQuantizedModel(FusedBaseAttentionModule):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
hidden_size,
num_heads,
qkv_proj,
o_proj,
rotary_emb,
):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
if self.head_dim * num_heads != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {num_heads})."
)
self.qkv_proj = qkv_proj
self.o_proj = o_proj
self.rotary_emb = rotary_emb
def _shape(self, tensor, seq_len, bsz):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states,
past_key_value=None,
attention_mask=None,
position_ids=None,
output_attentions=False,
use_cache=False,
**kwargs
):
"""Input shape: Batch x Time x Channel"""
bsz, q_len, _ = hidden_states.size()
qkv_states = self.qkv_proj(hidden_states)
query_states, key_states, value_states = torch.split(qkv_states, self.hidden_size, dim=2)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
is_causal = past_key_value is None
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
if use_cache:
# Since qkv_proj is fused, query_states etc will hold a reference to the original qkv_states tensor
# which can cause excessive memory usage by the cache. `contiguous` is a convenient way to workaround this.
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
past_key_value = (key_states, value_states) if use_cache else None
if compare_pytorch_version("v2.0.0", op="ge"):
attn_output = F.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=None if is_causal else attention_mask,
is_causal=is_causal
)
attn_weights = None
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
@classmethod
def inject_to_model(
cls,
model,
use_triton=False,
group_size=-1,
use_cuda_fp16=True,
desc_act=False,
trainable=False,
bits: int = 4,
disable_exllama=True,
disable_exllamav2=False,
**kwargs
):
"""
Replace all LlamaAttention modules with QuantLlamaAttention modules, fusing the q, k, v projections.
"""
QuantLinear = dynamically_import_QuantLinear(use_triton=use_triton, desc_act=desc_act, group_size=group_size, bits=bits, disable_exllama=disable_exllama, disable_exllamav2=disable_exllamav2)
for name, m in model.named_modules():
if not isinstance(m, LlamaAttention):
continue
q_proj = m.q_proj
k_proj = m.k_proj
v_proj = m.v_proj
qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
if QuantLinear.QUANT_TYPE == "exllama":
if desc_act:
# TODO: support it. The issue lies maybe in the line:
# int groups = qzeros.size(0);
# in exllama_ext.cpp
raise ValueError("Exllama kernel does not support query/key/value fusion with act-order. Please either use inject_fused_attention=False or disable_exllama=True.")
else:
g_idx = None
else:
g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0)
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
qlinear_args = (
q_proj.bits,
q_proj.group_size,
q_proj.infeatures,
q_proj.outfeatures + k_proj.outfeatures + v_proj.outfeatures,
True if q_proj.bias is not None else False,
)
qlinear_kwargs = {"trainable": trainable}
if (not desc_act or group_size == -1) and not use_triton:
qlinear_kwargs["use_cuda_fp16"] = use_cuda_fp16
qkv_layer = QuantLinear(*qlinear_args, **qlinear_kwargs)
qkv_layer.qweight = qweights
qkv_layer.qzeros = qzeros
qkv_layer.scales = scales
qkv_layer.g_idx = g_idx
qkv_layer.bias = bias
attn = cls(m.hidden_size, m.num_heads, qkv_layer, m.o_proj, m.rotary_emb)
if '.' in name:
parent_name = name.rsplit('.', 1)[0]
child_name = name[len(parent_name) + 1:]
parent = model.get_submodule(parent_name)
else:
parent_name = ''
parent = model
child_name = name
setattr(parent, child_name, attn)
__all__ = ["FusedLlamaAttentionForQuantizedModel"]

View file

@ -1,330 +0,0 @@
import math
from logging import getLogger
import torch
from transformers.models.llama.modeling_llama import LlamaMLP
from ._fused_base import FusedBaseMLPModule
from ..utils.import_utils import TRITON_AVAILABLE
logger = getLogger(__name__)
if TRITON_AVAILABLE:
import triton
import triton.language as tl
from .triton_utils import custom_autotune
from .triton_utils.kernels import silu
@custom_autotune.autotune(
configs=[
triton.Config(
{
'BLOCK_SIZE_M': 256,
'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 256,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 128,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 128,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
), # 3090
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 16,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
), # 3090
triton.Config(
{
'BLOCK_SIZE_M': 32,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 128,
'GROUP_SIZE_M': 8
},
num_stages=2,
num_warps=4
), # 3090
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 16,
'BLOCK_SIZE_K': 64,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
), # 3090
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 64,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
), # 3090
],
key=['M', 'N', 'K'],
nearest_power_of_two=True,
prune_configs_by={
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
'perf_model': None,
'top_k': None,
},
)
@triton.jit
def quant_fused_matmul_248_kernel(
a_ptr, c_ptr, b1_ptr,
scales1_ptr, zeros1_ptr,
g1_ptr, b2_ptr,
scales2_ptr, zeros2_ptr,
g2_ptr,
M, N, K,
bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr
):
"""
Computes: C = silu(A * B1) * (A * B2)
A is of shape (M, K) float16
B is of shape (K//8, N) int32
C is of shape (M, N) float16
scales is of shape (1, N) float16
zeros is of shape (1, N//8) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b1_ptrs = b1_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
b2_ptrs = b2_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn)
g1_ptrs = g1_ptr + offs_k
g2_ptrs = g2_ptr + offs_k
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales1_ptrs = scales1_ptr + offs_bn[None, :]
scales2_ptrs = scales2_ptr + offs_bn[None, :]
zeros1_ptrs = zeros1_ptr + (offs_bn[None, :] // infearure_per_bits)
zeros2_ptrs = zeros2_ptr + (offs_bn[None, :] // infearure_per_bits)
shifter = (offs_k % infearure_per_bits) * bits
zeros_shifter = (offs_bn % infearure_per_bits) * bits
accumulator1 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
accumulator2 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, num_pid_k):
g1_idx = tl.load(g1_ptrs)
g2_idx = tl.load(g2_ptrs)
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales1 = tl.load(scales1_ptrs + g1_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
scales2 = tl.load(scales2_ptrs + g2_idx[:, None] * stride_scales)
zeros1 = tl.load(zeros1_ptrs + g1_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros1 = (zeros1 >> zeros_shifter[None, :]) & maxq
zeros1 = (zeros1 + 1)
zeros2 = tl.load(zeros2_ptrs + g2_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros2 = (zeros2 >> zeros_shifter[None, :]) & maxq
zeros2 = (zeros2 + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
b1 = tl.load(b1_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
b2 = tl.load(b2_ptrs)
# Now we need to unpack b (which is N-bit values) into 32-bit values
b1 = (b1 >> shifter[:, None]) & maxq # Extract the N-bit values
b1 = (b1 - zeros1) * scales1 # Scale and shift
accumulator1 += tl.dot(a, b1)
b2 = (b2 >> shifter[:, None]) & maxq
b2 = (b2 - zeros2) * scales2
accumulator2 += tl.dot(a, b2)
a_ptrs += BLOCK_SIZE_K
b1_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
b2_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
g1_ptrs += BLOCK_SIZE_K
g2_ptrs += BLOCK_SIZE_K
accumulator1 = silu(accumulator1)
c = accumulator1 * accumulator2
c = c.to(tl.float16)
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
else:
quant_fused_matmul_248_kernel = None
class FusedLlamaMLPForQuantizedModel(FusedBaseMLPModule):
def __init__(
self,
gate_proj,
down_proj,
up_proj,
):
super().__init__()
self.infeatures = gate_proj.infeatures
self.intermediate_size = gate_proj.outfeatures
self.outfeatures = down_proj.outfeatures
self.bits = gate_proj.bits
self.maxq = gate_proj.maxq
self.gate_proj = gate_proj
self.up_proj = up_proj
self.down_proj = down_proj
def forward(self, x):
return self.down_proj(self.triton_llama_mlp(x))
def triton_llama_mlp(self, x):
with torch.cuda.device(x.device):
out_shape = x.shape[:-1] + (self.intermediate_size, )
x = x.reshape(-1, x.shape[-1])
M, K = x.shape
N = self.intermediate_size
c = torch.empty((M, N), device=x.device, dtype=torch.float16)
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
quant_fused_matmul_248_kernel[grid](
x, c, self.gate_proj.qweight,
self.gate_proj.scales, self.gate_proj.qzeros, self.gate_proj.g_idx,
self.up_proj.qweight,
self.up_proj.scales, self.up_proj.qzeros, self.up_proj.g_idx,
M, N, K,
self.bits, self.maxq,
x.stride(0), x.stride(1),
self.gate_proj.qweight.stride(0), self.gate_proj.qweight.stride(1),
c.stride(0), c.stride(1),
self.gate_proj.scales.stride(0), self.gate_proj.qzeros.stride(0)
)
c = c.reshape(out_shape)
return c
@classmethod
def inject_to_model(cls, model, use_triton=False, **kwargs):
if not use_triton:
logger.warning(f"skip module injection for {cls.__name__} not support integrate without triton yet.")
return
elif not TRITON_AVAILABLE:
logger.warning(f"skip module injection for triton is not installed.")
return
for name, m in model.named_modules():
if not isinstance(m, LlamaMLP):
continue
mlp = cls(m.gate_proj, m.down_proj, m.up_proj)
if '.' in name:
parent_name = name.rsplit('.', 1)[0]
child_name = name[len(parent_name) + 1:]
parent = model.get_submodule(parent_name)
else:
parent_name = ''
parent = model
child_name = name
setattr(parent, child_name, mlp)
@classmethod
def warmup(cls, model, transpose=False, seqlen=2048):
from tqdm import tqdm
kn_values = {}
for _, m in model.named_modules():
if not isinstance(m, cls):
continue
k = m.infeatures
n = m.intermediate_size
if (k, n) not in kn_values:
kn_values[(k, n)] = m
logger.info(f'Found {len(kn_values)} unique fused mlp KN values.')
logger.info('Warming up autotune cache ...')
with torch.no_grad():
for m in tqdm(range(0, math.ceil(math.log2(seqlen)) + 1)):
m = 2 ** m
for (k, n), (modules) in kn_values.items():
a = torch.randn(m, k, dtype=torch.float16, device=model.device)
modules.triton_llama_mlp(a)
del kn_values
__all__ = ["FusedLlamaMLPForQuantizedModel"]

View file

@ -9,40 +9,32 @@ import transformers
logger = getLogger(__name__) logger = getLogger(__name__)
try: try:
import autogptq_cuda_256 import quant_cuda
import autogptq_cuda_64
_autogptq_cuda_available = True _quant_cuda_available = True
except ImportError: except ImportError:
logger.warning('CUDA extension not installed.') logger.warning('CUDA extension not installed.')
autogptq_cuda_256 = None _quant_cuda_available = False
autogptq_cuda_64 = None
_autogptq_cuda_available = False
class QuantLinear(nn.Module): class QuantLinear(nn.Module):
QUANT_TYPE = "cuda"
def __init__( def __init__(
self, self,
bits, bits,
group_size, groupsize,
infeatures, infeatures,
outfeatures, outfeatures,
bias, bias,
kernel_switch_threshold=128, kernel_switch_threshold=128,
trainable=False
): ):
super().__init__() super().__init__()
global _autogptq_cuda_available
if bits not in [2, 3, 4, 8]: if bits not in [2, 3, 4, 8]:
raise NotImplementedError("Only 2,3,4,8 bits are supported.") raise NotImplementedError("Only 2,3,4,8 bits are supported.")
if trainable:
_autogptq_cuda_available = False
self.infeatures = infeatures self.infeatures = infeatures
self.outfeatures = outfeatures self.outfeatures = outfeatures
self.bits = bits self.bits = bits
self.group_size = group_size if group_size != -1 else infeatures self.groupsize = groupsize if groupsize != -1 else infeatures
self.maxq = 2 ** self.bits - 1 self.maxq = 2 ** self.bits - 1
self.register_buffer( self.register_buffer(
@ -51,15 +43,15 @@ class QuantLinear(nn.Module):
) )
self.register_buffer( self.register_buffer(
'qzeros', 'qzeros',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32) torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32)
) )
self.register_buffer( self.register_buffer(
'scales', 'scales',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16) torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16)
) )
self.register_buffer( self.register_buffer(
'g_idx', 'g_idx',
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32) torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32)
) )
if bias: if bias:
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16)) self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
@ -80,18 +72,9 @@ class QuantLinear(nn.Module):
).reshape(1, 3, 12) ).reshape(1, 3, 12)
self.kernel_switch_threshold = kernel_switch_threshold self.kernel_switch_threshold = kernel_switch_threshold
self.autogptq_cuda_available = _autogptq_cuda_available self.quant_cuda_available = _quant_cuda_available
self.autogptq_cuda = autogptq_cuda_256
if infeatures % 256 != 0 or outfeatures % 256 != 0: if infeatures % 256 != 0 or outfeatures % 256 != 0:
self.autogptq_cuda = autogptq_cuda_64 self.quant_cuda_available = False
if infeatures % 64 != 0 or outfeatures % 64 != 0:
self.autogptq_cuda_available = False
self.trainable = trainable
def post_init(self):
pass
def pack(self, linear, scales, zeros, g_idx=None): def pack(self, linear, scales, zeros, g_idx=None):
W = linear.weight.data.clone() W = linear.weight.data.clone()
@ -196,20 +179,21 @@ class QuantLinear(nn.Module):
def forward(self, x: torch.Tensor): def forward(self, x: torch.Tensor):
out_shape = x.shape[:-1] + (self.outfeatures,) out_shape = x.shape[:-1] + (self.outfeatures,)
x = x.reshape(-1, x.shape[-1]) x = x.reshape(-1, x.shape[-1])
if self.autogptq_cuda_available and ( if self.quant_cuda_available and (
self.kernel_switch_threshold == 0 or x.shape[0] < self.kernel_switch_threshold self.kernel_switch_threshold == 0 or x.shape[0] < self.kernel_switch_threshold
): ):
out = torch.zeros((x.shape[0], self.outfeatures), device=x.device, dtype=torch.float32) out = torch.zeros((x.shape[0], self.outfeatures), device=x.device, dtype=torch.float32)
if self.bits == 2: if self.bits == 2:
self.autogptq_cuda.vecquant2matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx) quant_cuda.vecquant2matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
elif self.bits == 3: elif self.bits == 3:
self.autogptq_cuda.vecquant3matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx) quant_cuda.vecquant3matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
elif self.bits == 4: elif self.bits == 4:
self.autogptq_cuda.vecquant4matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx) quant_cuda.vecquant4matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
elif self.bits == 8: elif self.bits == 8:
self.autogptq_cuda.vecquant8matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx) quant_cuda.vecquant8matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx)
else: else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.") raise NotImplementedError("Only 2,3,4,8 bits are supported.")
out = out.half()
else: else:
if self.wf.device != self.qzeros.device: if self.wf.device != self.qzeros.device:
self.wf = self.wf.to(self.qzeros.device) self.wf = self.wf.to(self.qzeros.device)
@ -219,7 +203,7 @@ class QuantLinear(nn.Module):
torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits), torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits),
self.wf.unsqueeze(0) self.wf.unsqueeze(0)
).to(torch.int16 if self.bits == 8 else torch.int8) ).to(torch.int16 if self.bits == 8 else torch.int8)
zeros = torch.bitwise_and(zeros, (2 ** self.bits) - 1) torch.bitwise_and(zeros, (2 ** self.bits) - 1, out=zeros)
zeros = zeros + 1 zeros = zeros + 1
zeros = zeros.reshape(self.scales.shape) zeros = zeros.reshape(self.scales.shape)
@ -228,7 +212,7 @@ class QuantLinear(nn.Module):
torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1), torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1),
self.wf.unsqueeze(-1) self.wf.unsqueeze(-1)
).to(torch.int16 if self.bits == 8 else torch.int8) ).to(torch.int16 if self.bits == 8 else torch.int8)
weight = torch.bitwise_and(weight, (2 ** self.bits) - 1) torch.bitwise_and(weight, (2 ** self.bits) - 1, out=weight)
elif self.bits == 3: elif self.bits == 3:
zeros = self.qzeros.reshape( zeros = self.qzeros.reshape(
self.qzeros.shape[0], self.qzeros.shape[1] // 3, 3, 1 self.qzeros.shape[0], self.qzeros.shape[1] // 3, 3, 1
@ -254,23 +238,12 @@ class QuantLinear(nn.Module):
raise NotImplementedError("Only 2,3,4,8 bits are supported.") raise NotImplementedError("Only 2,3,4,8 bits are supported.")
weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2]) weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
num_itr = self.g_idx.shape[0]//x.shape[-1]
if num_itr == 1: weights = (self.scales[self.g_idx.long()] * (weight - zeros[self.g_idx.long()]))
weights = (self.scales[self.g_idx.long()] * (weight - zeros[self.g_idx.long()])) out = torch.matmul(x.half(), weights)
else: out = out.reshape(out_shape)
num_dim = self.g_idx.shape[0]//num_itr
weights = []
for i in range(num_itr):
scale_i = self.scales[:,i*num_dim:(i+1)*num_dim]
weight_i = weight[:,i*num_dim:(i+1)*num_dim]
zeros_i = zeros[:,i*num_dim:(i+1)*num_dim]
g_idx_i = self.g_idx[i*num_dim:(i+1)*num_dim]
weights.append(scale_i[g_idx_i.long()] * (weight_i - zeros_i[g_idx_i.long()]))
weights = torch.cat(weights,dim=1)
out = torch.matmul(x.to(weights.dtype), weights)
out = out.half().reshape(out_shape)
out = out + self.bias if self.bias is not None else out out = out + self.bias if self.bias is not None else out
return out.to(x.dtype) return out
__all__ = ["QuantLinear"] __all__ = ["QuantLinear"]

View file

@ -1,56 +0,0 @@
import torch.nn as nn
class GeneralQuantLinear(nn.Linear):
def __init__(self, quant_linear_module):
super().__init__(
in_features=quant_linear_module.infeatures,
out_features=quant_linear_module.outfeatures,
bias=True
)
self.infeatures = quant_linear_module.infeatures
self.outfeatures = quant_linear_module.outfeatures
self.bits = quant_linear_module.bits
self.group_size = quant_linear_module.group_size
self.maxq = quant_linear_module.maxq
self.weight.requires_grad = False
self.weight.data = quant_linear_module.qweight
self.register_buffer('qweight', quant_linear_module.qweight)
self.bias.data = quant_linear_module.bias
self.qweight.requires_grad = False
self.bias.requires_grad = False
self.register_buffer('qzeros', quant_linear_module.qzeros)
self.register_buffer('scales', quant_linear_module.scales)
self.register_buffer('g_idx', quant_linear_module.g_idx)
if hasattr(quant_linear_module, "wf"):
self.wf = quant_linear_module.wf
if hasattr(quant_linear_module, "kernel_switch_threshold"):
self.kernel_switch_threshold = quant_linear_module.kernel_switch_threshold
if hasattr(quant_linear_module, "autogptq_cuda_available"):
self.autogptq_cuda_available = quant_linear_module.autogptq_cuda_available
self.trainable = quant_linear_module.trainable
self.forward = quant_linear_module.forward
@classmethod
def inject_to_model(cls, model, target_module_type):
for name, m in model.named_modules():
if not isinstance(m, target_module_type):
continue
new_m = cls(m)
if '.' in name:
parent_name = name.rsplit('.', 1)[0]
child_name = name[len(parent_name) + 1:]
parent = model.get_submodule(parent_name)
else:
parent_name = ''
parent = model
child_name = name
setattr(parent, child_name, new_m)

View file

@ -1,171 +0,0 @@
# Adapted from turboderp exllama: https://github.com/turboderp/exllama
from logging import getLogger
import torch
import torch.nn as nn
import math
import numpy as np
import transformers
logger = getLogger(__name__)
try:
from exllama_kernels import make_q4, q4_matmul
except ImportError:
logger.error('exllama_kernels not installed.')
raise
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")
def ext_make_q4(qweight, qzeros, scales, g_idx, device):
"""Construct Q4Matrix, return handle"""
return make_q4(qweight,
qzeros,
scales,
g_idx if g_idx is not None else none_tensor,
device)
def ext_q4_matmul(x, q4, q4_width):
"""Matrix multiplication, returns x @ q4"""
outshape = x.shape[:-1] + (q4_width,)
x = x.view(-1, x.shape[-1])
output = torch.empty((x.shape[0], q4_width), dtype=torch.float16, device=x.device)
q4_matmul(x, q4, output)
return output.view(outshape)
class QuantLinear(nn.Module):
QUANT_TYPE = "exllama"
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
super().__init__()
if bits != 4:
raise ValueError(
f"Exllama kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.")
if trainable:
raise NotImplementedError("Exllama kernel does not support training.")
self.infeatures = infeatures
self.outfeatures = outfeatures
self.bits = bits
self.group_size = group_size if group_size != -1 else infeatures
self.trainable = trainable
self.maxq = 2 ** self.bits - 1
assert infeatures % 32 == 0
assert infeatures % self.group_size == 0
assert outfeatures % 32 == 0
self.register_buffer(
'qweight',
torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)
)
self.register_buffer(
'qzeros',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32)
)
self.register_buffer(
'scales',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16)
)
self.register_buffer(
'g_idx',
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32)
)
if bias:
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
else:
self.bias = None
def post_init(self):
assert self.qweight.device.type == "cuda"
assert self.qweight.device.index is not None
self.width = self.qweight.shape[1]
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
self.q4 = ext_make_q4(
self.qweight,
self.qzeros,
self.scales,
self.g_idx.to("cpu") if self._use_act_order else None,
self.qweight.device.index
)
def pack(self, linear, scales, zeros, g_idx=None):
W = linear.weight.data.clone()
if isinstance(linear, nn.Conv2d):
W = W.flatten(1)
if isinstance(linear, transformers.pytorch_utils.Conv1D):
W = W.t()
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(
torch.round(
(
W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]
).to(torch.int)[:, None]
)
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
i = 0
row = 0
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
while row < qweight.shape[0]:
if self.bits in [4]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
else:
raise NotImplementedError("Only 4 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [4]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
else:
raise NotImplementedError("Only 4 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
out = ext_q4_matmul(x.half(), self.q4, self.width)
if self.bias is not None:
out.add_(self.bias)
return out

View file

@ -1,188 +0,0 @@
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2
from logging import getLogger
import torch
import torch.nn as nn
import math
logger = getLogger(__name__)
try:
from exllamav2_kernels import make_q_matrix, gemm_half_q_half
except ImportError:
logger.error('exllamav2_kernels not installed.')
raise
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")
def _torch_device(idx):
if idx == -1: return "cpu"
return f"cuda:{idx}"
def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
"""Matrix multiplication, returns x @ q4"""
output_shape = x.shape[:-1] + (q4_width,)
x = x.view(-1, x.shape[-1])
output = torch.empty((x.shape[0], q4_width), dtype = torch.half, device = x.device)
gemm_half_q_half(x, q_handle, output, force_cuda)
return output.view(output_shape)
def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
"""
Create Q matrix
"""
# EXL2
# won't work as the moment because the tensors are not the same.
if "q_weight" in w:
w["q_scale_max"] /= 256
w["q_perm"] = w["q_perm"].short()
w["q_invperm"] = w["q_invperm"].short()
return make_q_matrix(w["q_weight"],
w["q_perm"],
w["q_invperm"],
w["q_scale"],
w["q_scale_max"],
w["q_groups"],
none_tensor,
none_tensor,
none_tensor,
temp_dq)
# GPTQ
elif "qweight" in w:
if w["scales"].dtype == torch.float:
w["scales"] = w["scales"].half()
# GPTQ with g_idx (act_order)
if "g_idx" in w and not (w["g_idx"] == 0).all().item():
w["q_perm"] = torch.empty((w["qweight"].shape[0] * 8,), dtype = torch.short, device = w["qweight"].device)
w["q_invperm"] = torch.empty_like(w["q_perm"])
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
return make_q_matrix(w["qweight"],
w["q_perm"],
w["q_invperm"],
none_tensor,
none_tensor,
none_tensor,
w["qzeros"],
w["scales"],
w["g_idx"].cpu(),
temp_dq)
# GPTQ without g_idx
else:
return make_q_matrix(w["qweight"],
none_tensor,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
w["qzeros"],
w["scales"],
none_tensor,
temp_dq)
class QuantLinear(nn.Module):
QUANT_TYPE = "exllamav2"
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
super().__init__()
if bits != 4:
raise ValueError(
f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.")
if trainable:
raise NotImplementedError("Exllamav2 kernel does not support training.")
self.q_handle = None
self.q_tensors = None
self.padding = - outfeatures % 32
self.infeatures = infeatures
self.outfeatures = outfeatures + self.padding
self.bits = bits
self.group_size = group_size if group_size != -1 else infeatures
self.trainable = trainable
self.maxq = 2 ** self.bits - 1
assert infeatures % 32 == 0
assert infeatures % self.group_size == 0
assert outfeatures % 32 == 0
# I need to register the tensors, otherwise, we won't be able to load them easily using transformers ...
self.register_buffer(
'qweight',
torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)
)
self.register_buffer(
'qzeros',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32)
)
self.register_buffer(
'scales',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16)
)
self.register_buffer(
'g_idx',
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32)
)
if bias:
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
else:
self.bias = None
def post_init(self, temp_dq):
assert self.qweight.device.type == "cuda"
assert self.qweight.device.index is not None
self.q_tensors = {
"qweight":self.qweight,
"qzeros":self.qzeros,
"scales":self.scales,
"g_idx":self.g_idx
}
temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
self.q_handle = ext_make_q_matrix(
self.q_tensors, temp_dq
)
def forward(self, x, force_cuda = False):
output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)
if self.bias is not None:
output.add_(self.bias)
return output
def temp_dq_size(self):
return self.infeatures * self.outfeatures * 2 + 128
def temp_fwd_size(self, max_input_len, max_batch_size):
return self.outfeatures * max_input_len * max_batch_size * 4 + 128
def scratch_space_fixed(self, max_input_len=2048, max_batch_size=8):
return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)
class ExLlamaV2DeviceTensors:
device_idx: int
scratch_bytes: int
scratch_idx: int
scratch: torch.tensor = None
def __init__(self, device_idx, scratch_bytes):
self.device_idx = device_idx
self.scratch_bytes = scratch_bytes
def prepare(self):
self.scratch = torch.empty((self.scratch_bytes // 2,), dtype = torch.half, device = _torch_device(self.device_idx))
def get_scratch_slice(self, size_bytes):
if self.scratch is None: self.prepare()
size_bytes = ((size_bytes + 127) // 128) * 128
size_half = size_bytes // 2
scratch_slice = self.scratch.narrow(0, 0, size_half)
return scratch_slice

View file

@ -1,262 +0,0 @@
from copy import deepcopy
import torch
from torch import nn
from tqdm import tqdm
import gc
import math
import numpy as np
from gekko import GEKKO
from logging import getLogger
logger = getLogger(__name__)
try:
import cQIGen as qinfer
except ImportError:
logger.error('cQIGen not installed.')
raise
def mem_model(N, M, T, mu, tu, bits, l1, p, gs):
m = GEKKO() # create GEKKO model
#cinfergen if bits==3:
# tu = tu*3
B = m.Const(value=bits)
TP = m.Const(value=T//p)
k = m.Var(1,integer=True,lb=1)
z = m.Var(1,integer=True,lb=1)
w = m.Var(1,integer=True,lb=1)
y = m.Var(1,integer=True,lb=1)
v = m.Var(1,integer=True,lb=1)
mb = m.Var(mu,integer=True,lb=1)
if gs != -1:
gg = m.Var(1,integer=True,lb=1)
tb = m.Var(tu,integer=True,lb=1,ub=int(T/p))
L = m.Var(integer=True,lb=0,ub=l1)
m.Equation(L == 32 * mb * N + B * mb * tb + 32 * tb * N)
m.Equation(mb * k == M)
if gs != -1:
m.Equation(gs * gg == mb)
# m.Equation(tb * z == T)
m.Equation(tb * z == TP)
m.Equation(mu * w == mb)
m.Equation(tu * y == tb)
# m.Equation(tb * v == tt)
m.Maximize(L)
m.options.SOLVER = 1
m.solver_options = ['minlp_maximum_iterations 1000', \
# minlp iterations with integer solution
'minlp_max_iter_with_int_sol 10', \
# treat minlp as nlp
'minlp_as_nlp 0', \
# nlp sub-problem max iterations
'nlp_maximum_iterations 100', \
# 1 = depth first, 2 = breadth first
'minlp_branch_method 2', \
# maximum deviation from whole number
'minlp_integer_tol 0.00', \
# covergence tolerance
'minlp_gap_tol 0.01']
try:
m.solve(disp=False)
except:
try:
m.solver_options = ['minlp_maximum_iterations 1000', \
# minlp iterations with integer solution
'minlp_max_iter_with_int_sol 10', \
# treat minlp as nlp
'minlp_as_nlp 0', \
# nlp sub-problem max iterations
'nlp_maximum_iterations 100', \
# 1 = depth first, 2 = breadth first
'minlp_branch_method 1', \
# maximum deviation from whole number
'minlp_integer_tol 0.00', \
# covergence tolerance
'minlp_gap_tol 0.01']
m.solve(disp=False)
except:
# mytb = T//p
mytb = tu
if gs != -1:
mymb = gs
while 32 * (mymb + gs) * N + bits * (mymb + gs) * mytb + 32 * mytb * N < l1:
mymb += gs
while M % mymb != 0:
mymb -= gs
return (int(mymb), int(mytb))
else:
mymb = mu
while 32 * (mymb + mu) * N + bits * (mymb + mu) * mytb + 32 * mytb * N < l1:
mymb += mu
while M % mymb != 0:
mymb -= mu
return (int(mymb), int(mytb))
return (int(mb.value[0]), int(tb.value[0]))
params = {}
def compute_reductions(x, gs=-1, cpp=True):
if cpp:
if len(x.shape) != 1:
rows, cols = x.shape
else:
rows = 1
cols = x.shape[0]
if gs == -1:
out = torch.zeros(rows).float().contiguous()
mygs = cols
else:
out = torch.zeros(rows, cols // gs).float().contiguous()
mygs = gs
qinfer.compute_reduction_cpp(x, out, rows, cols, mygs)
return out
if gs == -1:
if len(x.shape) != 1:
return torch.sum(x,1)
else:
return torch.sum(x)
else:
if len(x.shape) != 1:
rows, cols = x.shape
out = torch.zeros(rows, cols // gs).float().contiguous()
for i in range(cols // gs):
out[:,i] = torch.sum(x[:,i*gs:(i+1)*gs],1)
return out
else:
cols = x.shape[0]
out = torch.zeros(cols // gs).float().contiguous()
for i in range(cols // gs):
out[i] = torch.sum(x[i*gs:(i+1)*gs])
return out
def process_zeros_scales(zeros, scales, bits, M):
if zeros.dtype != torch.float32:
new_zeros = torch.zeros_like(scales).float().contiguous()
if bits == 4:
qinfer.unpack_zeros4(zeros, new_zeros, new_zeros.shape[0], new_zeros.shape[1])
elif bits == 2:
qinfer.unpack_zeros2(zeros, new_zeros, new_zeros.shape[0], new_zeros.shape[1])
elif bits == 3:
logger.info("Unpacking zeros for 3 bits")
new_scales = scales.contiguous()
else:
if scales.shape[1] != M:
new_scales = scales.transpose(0,1).contiguous()
else:
new_scales = scales.contiguous()
if zeros.shape[1] != M:
new_zeros = zeros.transpose(0,1).contiguous()
else:
new_zeros = zeros.contiguous()
return new_zeros, new_scales
class QuantLinear(nn.Module):
QUANT_TYPE = "qigen"
def __init__(self, bits, group_size, infeatures, outfeatures, bias=None, trainable=False, hint=1, p=8, l1=2**18):
super().__init__()
if bits not in [2, 4]:
raise NotImplementedError("Only 2,4 bits are supported.")
if trainable:
raise NotImplementedError("Qigen kernel does not support training.")
self.bits = bits
pack = 32 // bits
self.infeatures = infeatures
self.outfeatures = outfeatures
n = hint
m = self.infeatures
t = self.outfeatures
#registers for now are fixed
if bits == 3:
packed = 32
unroll = 3
nu = 1 #args.n
mu = 32
tu = 32
else:
packed = 32 // bits
unroll = 2
nu = 1 #args.n
mu = 16
tu = 32
nb = n # it's always small for transformers
global params
if (m,t) in params:
mb = params[(m,t)][0]
tb = params[(m,t)][1]
else:
mb, tb = mem_model(n, m, t, mu, tu, bits, l1, p, group_size)
params[(m,t)] = (mb,tb)
split = np.ones(p)
split = split * tb
while np.sum(split) < t:
split = split + tb
idx = p - 1
while np.sum(split) > t:
split[idx] = split[idx] - tb
idx = idx - 1
assert(np.sum(split) == t)
split = split.astype(int)
self.tt = int(split[0])
if split[0] == split[-1]:
self.cutoff = int(p+1)
else:
self.cutoff = int(idx + 1)
self.mb = mb #// packed
self.tb = tb
self.group_size = group_size
self.register_buffer('bias', torch.zeros(self.outfeatures))
self.register_buffer('zeros', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float32))
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float32))
if bits == 4:
self.register_buffer('qweight', torch.zeros(int(self.infeatures // packed * self.outfeatures)).int().contiguous())
elif bits == 3:
self.register_buffer('qweight', torch.zeros(int(self.infeatures // packed * 3 * self.outfeatures)).int().contiguous())
elif bits == 2:
self.register_buffer('qweight', torch.zeros(int(self.infeatures // packed * self.outfeatures)).int().contiguous())
def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures,)
x = x.reshape((-1, x.shape[-1])).to(torch.float32)
B = x.shape[0]
new_x = x.T.contiguous()
out = torch.zeros((B, self.outfeatures), dtype=torch.float32)
sums = compute_reductions(x,gs=self.group_size,cpp=True).contiguous()
if self.group_size == -1:
if self.bits == 4:
qinfer.forward4(new_x, self.qweight, out, self.bias, self.scales, self.zeros, sums,
B, self.infeatures, self.outfeatures, B, self.mb, self.tb, self.tt, self.cutoff)
elif self.bits == 2:
qinfer.forward2(new_x, self.qweight, out, self.bias, self.scales, self.zeros, sums,
B, self.infeatures, self.outfeatures, B, self.mb, self.tb, self.tt, self.cutoff)
elif self.bits == 3:
qinfer.forward3(new_x, self.qweight, out, self.bias, self.scales, self.zeros, sums,
B, self.infeatures, self.outfeatures, B, self.mb, self.tb, self.tt, self.cutoff)
else:
if self.bits == 4:
qinfer.forward_gs4(new_x, self.qweight, out, self.bias, self.scales, self.zeros, sums,
B, self.infeatures, self.outfeatures, B, self.mb, self.tb, self.tt, self.group_size, self.cutoff)
elif self.bits == 2:
qinfer.forward_gs2(new_x, self.qweight, out, self.bias, self.scales, self.zeros, sums,
B, self.infeatures, self.outfeatures, B, self.mb, self.tb, self.tt, self.group_size, self.cutoff)
elif self.bits == 3:
qinfer.forward_gs3(new_x, self.qweight, out, self.bias, self.scales, self.zeros, sums,
B, self.infeatures, self.outfeatures, B, self.mb, self.tb, self.tt, self.group_size, self.cutoff)
return out.reshape(out_shape)

View file

@ -1,186 +0,0 @@
import math
from logging import getLogger
import numpy as np
import torch
import torch.nn as nn
import transformers
from ..triton_utils.mixin import TritonModuleMixin
logger = getLogger(__name__)
try:
from ..triton_utils.kernels import (
quant_matmul_248, transpose_quant_matmul_248, quant_matmul_inference_only_248,
QuantLinearFunction, QuantLinearInferenceOnlyFunction
)
except ImportError:
logger.error('triton not installed.')
raise
class QuantLinear(nn.Module, TritonModuleMixin):
QUANT_TYPE = "triton"
def __init__(
self,
bits,
group_size,
infeatures,
outfeatures,
bias,
trainable=False
):
super().__init__()
if bits not in [2, 4, 8]:
raise NotImplementedError("Only 2,4,8 bits are supported.")
if infeatures % 32 != 0 or outfeatures % 32 != 0:
raise NotImplementedError("in_feature and out_feature must be divisible by 32.")
self.infeatures = infeatures
self.outfeatures = outfeatures
self.bits = bits
self.group_size = group_size if group_size != -1 else infeatures
self.maxq = 2 ** self.bits - 1
self.register_buffer(
'qweight',
torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)
)
self.register_buffer(
'qzeros',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32)
)
self.register_buffer(
'scales',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16)
)
self.register_buffer(
'g_idx',
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32)
)
if bias:
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
else:
self.bias = None
self.trainable = trainable
def post_init(self):
pass
def pack(self, linear, scales, zeros, g_idx=None):
W = linear.weight.data.clone()
if isinstance(linear, nn.Conv2d):
W = W.flatten(1)
if isinstance(linear, transformers.pytorch_utils.Conv1D):
W = W.t()
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(
torch.round(
(
W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]
).to(torch.int)[:, None]
)
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
i = 0
row = 0
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
while row < qweight.shape[0]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures,)
quant_linear_fn = QuantLinearFunction if self.trainable else QuantLinearInferenceOnlyFunction
out = quant_linear_fn.apply(
x.reshape(-1, x.shape[-1]),
self.qweight,
self.scales,
self.qzeros,
self.g_idx,
self.bits,
self.maxq
)
out = out.half().reshape(out_shape)
out = out + self.bias if self.bias is not None else out
return out
@classmethod
def warmup(cls, model, transpose=False, seqlen=2048):
"""
Pre-tunes the quantized kernel
"""
from tqdm import tqdm
kn_values = {}
for _, m in model.named_modules():
if not isinstance(m, cls):
continue
k = m.infeatures
n = m.outfeatures
if (k, n) not in kn_values:
kn_values[(k, n)] = (m.qweight, m.scales, m.qzeros, m.g_idx, m.bits, m.maxq)
logger.info(f'Found {len(kn_values)} unique KN Linear values.')
logger.info('Warming up autotune cache ...')
with torch.no_grad():
for m in tqdm(range(0, math.ceil(math.log2(seqlen)) + 1)):
m = 2 ** m
for (k, n), (qweight, scales, qzeros, g_idx, bits, maxq) in kn_values.items():
if transpose:
a = torch.randn(m, k, dtype=torch.float16, device=model.device)
quant_matmul_248(a, qweight, scales, qzeros, g_idx, bits, maxq)
a = torch.randn(m, n, dtype=torch.float16, device=model.device)
transpose_quant_matmul_248(a, qweight, scales, qzeros, g_idx, bits, maxq)
else:
a = torch.randn(m, k, dtype=torch.float16, device=model.device)
quant_matmul_inference_only_248(a, qweight, scales, qzeros, g_idx, bits, maxq)
del kn_values
__all__ = ["QuantLinear"]

View file

@ -7,41 +7,34 @@ import torch.nn as nn
import transformers import transformers
logger = getLogger(__name__) logger = getLogger(__name__)
try: try:
import autogptq_cuda_256 import quant_cuda
import autogptq_cuda_64
_autogptq_cuda_available = True _quant_cuda_available = True
except ImportError: except ImportError:
logger.warning('CUDA extension not installed.') logger.warning('CUDA extension not installed.')
autogptq_cuda_256 = None _quant_cuda_available = False
autogptq_cuda_64 = None
_autogptq_cuda_available = False
class QuantLinear(nn.Module): class QuantLinear(nn.Module):
QUANT_TYPE = "cuda-old"
def __init__( def __init__(
self, self,
bits, bits,
group_size, groupsize,
infeatures, infeatures,
outfeatures, outfeatures,
bias, bias,
use_cuda_fp16=True, faster=True,
kernel_switch_threshold=128, kernel_switch_threshold=128
trainable=False
): ):
super().__init__() super().__init__()
global _autogptq_cuda_available
if bits not in [2, 3, 4, 8]: if bits not in [2, 3, 4, 8]:
raise NotImplementedError("Only 2,3,4,8 bits are supported.") raise NotImplementedError("Only 2,3,4,8 bits are supported.")
if trainable:
_autogptq_cuda_available = False
self.infeatures = infeatures self.infeatures = infeatures
self.outfeatures = outfeatures self.outfeatures = outfeatures
self.bits = bits self.bits = bits
self.group_size = group_size if group_size != -1 else infeatures self.groupsize = groupsize if groupsize != -1 else infeatures
self.maxq = 2 ** self.bits - 1 self.maxq = 2 ** self.bits - 1
self.register_buffer( self.register_buffer(
@ -50,25 +43,23 @@ class QuantLinear(nn.Module):
) )
self.register_buffer( self.register_buffer(
'qzeros', 'qzeros',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32) torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32)
) )
self.register_buffer( self.register_buffer(
'scales', 'scales',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16) torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16)
) )
self.register_buffer( self.register_buffer(
'g_idx', 'g_idx',
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32) torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32)
) )
if bias: if bias:
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16)) self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
else: else:
self.bias = None self.bias = None
self.half_indim = self.infeatures // 2 self.half_indim = self.infeatures // 2
self.faster = faster if bits != 8 else False
self.use_cuda_fp16 = use_cuda_fp16 if bits != 8 else False
# is performed by unpacking the weights and using torch.matmul # is performed by unpacking the weights and using torch.matmul
if self.bits in [2, 4, 8]: if self.bits in [2, 4, 8]:
self.wf = torch.tensor(list(range(0, 32, self.bits)), dtype=torch.int32).unsqueeze(0) self.wf = torch.tensor(list(range(0, 32, self.bits)), dtype=torch.int32).unsqueeze(0)
@ -83,25 +74,11 @@ class QuantLinear(nn.Module):
).reshape(1, 3, 12) ).reshape(1, 3, 12)
self.kernel_switch_threshold = kernel_switch_threshold self.kernel_switch_threshold = kernel_switch_threshold
self.autogptq_cuda_available = _autogptq_cuda_available self.quant_cuda_available = _quant_cuda_available
self.autogptq_cuda = autogptq_cuda_256
if infeatures % 256 != 0 or outfeatures % 256 != 0: if infeatures % 256 != 0 or outfeatures % 256 != 0:
self.autogptq_cuda = autogptq_cuda_64 self.quant_cuda_available = False
if infeatures % 64 != 0 or outfeatures % 64 != 0:
self.autogptq_cuda_available = False
self.trainable = trainable
def post_init(self):
pass
def pack(self, linear, scales, zeros, g_idx): def pack(self, linear, scales, zeros, g_idx):
W = linear.weight.data.clone()
if isinstance(linear, nn.Conv2d):
W = W.flatten(1)
if isinstance(linear, transformers.pytorch_utils.Conv1D):
W = W.t()
scales = scales.t().contiguous() scales = scales.t().contiguous()
zeros = zeros.t().contiguous() zeros = zeros.t().contiguous()
scale_zeros = zeros * scales scale_zeros = zeros * scales
@ -111,10 +88,10 @@ class QuantLinear(nn.Module):
intweight = [] intweight = []
for idx in range(self.infeatures): for idx in range(self.infeatures):
g_idx = idx // self.group_size g_idx = idx // self.groupsize
intweight.append( intweight.append(
torch.round( torch.round(
(W[:, idx] + scale_zeros[g_idx]) / self.scales[g_idx] (linear.weight.data[:, idx] + scale_zeros[g_idx]) / self.scales[g_idx]
).to(torch.int)[:, None] ).to(torch.int)[:, None]
) )
intweight = torch.cat(intweight, dim=1) intweight = torch.cat(intweight, dim=1)
@ -196,80 +173,105 @@ class QuantLinear(nn.Module):
def forward(self, x): def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures,) out_shape = x.shape[:-1] + (self.outfeatures,)
x = x.reshape(-1, x.shape[-1]) x = x.reshape(-1, x.shape[-1])
if self.autogptq_cuda_available is True and ( if self.quant_cuda_available is True and (
self.kernel_switch_threshold is False or x.shape[0] < self.kernel_switch_threshold self.kernel_switch_threshold is False or x.shape[0] < self.kernel_switch_threshold
): ):
out = torch.zeros(x.shape[0], out_shape[-1], dtype=torch.float, device=x.device) out = torch.zeros(x.shape[0], out_shape[-1], dtype=torch.float, device=x.device)
if self.use_cuda_fp16:
if self.faster:
x = x.half() x = x.half()
if self.bits == 2: if self.bits == 2:
self.autogptq_cuda.vecquant2matmul_faster_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size, self.half_indim) quant_cuda.vecquant2matmul_faster_old(
x, self.qweight, out, self.scales.float(), self.qzeros, self.groupsize, self.half_indim
)
elif self.bits == 3: elif self.bits == 3:
self.autogptq_cuda.vecquant3matmul_faster_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size, self.half_indim) quant_cuda.vecquant3matmul_faster_old(
x, self.qweight, out, self.scales.float(), self.qzeros, self.groupsize, self.half_indim
)
elif self.bits == 4: elif self.bits == 4:
self.autogptq_cuda.vecquant4matmul_faster_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size, self.half_indim) quant_cuda.vecquant4matmul_faster_old(
x, self.qweight, out, self.scales.float(), self.qzeros, self.groupsize, self.half_indim
)
else: else:
raise NotImplementedError("Only 2,3,4 bits are supported.") raise NotImplementedError("Only 2,3,4 bits are supported.")
else: else:
x = x.float() x = x.float()
if self.bits == 2: if self.bits == 2:
self.autogptq_cuda.vecquant2matmul_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size) quant_cuda.vecquant2matmul_old(
x, self.qweight, out, self.scales.float(), self.qzeros, self.groupsize
)
elif self.bits == 3: elif self.bits == 3:
self.autogptq_cuda.vecquant3matmul_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size) quant_cuda.vecquant3matmul_old(
x, self.qweight, out, self.scales.float(), self.qzeros, self.groupsize
)
elif self.bits == 4: elif self.bits == 4:
self.autogptq_cuda.vecquant4matmul_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size) quant_cuda.vecquant4matmul_old(
x, self.qweight, out, self.scales.float(), self.qzeros, self.groupsize
)
elif self.bits == 8: elif self.bits == 8:
self.autogptq_cuda.vecquant8matmul_old(x, self.qweight, out, self.scales.float(), self.qzeros, self.group_size) quant_cuda.vecquant8matmul_old(
x, self.qweight, out, self.scales.float(), self.qzeros, self.groupsize
)
else: else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.") raise NotImplementedError("Only 2,3,4,8 bits are supported.")
else: else:
if self.wf.device != self.qzeros.device: if self.wf.device != self.qzeros.device:
self.wf = self.wf.to(self.qzeros.device) self.wf = self.wf.to(self.qzeros.device)
if self.bits in [2,4,8]: if self.bits in [2, 4, 8]:
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits), self.wf.unsqueeze(0)).to(torch.int16 if self.bits == 8 else torch.int8) zeros = torch.bitwise_right_shift(
zeros = torch.bitwise_and(zeros, (2 ** self.bits) - 1) torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits),
self.wf.unsqueeze(0)
zeros = zeros + 1 ).to(torch.int16 if self.bits == 8 else torch.int8)
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2]) torch.bitwise_and(zeros, (2 ** self.bits) - 1, out=zeros)
scales = self.scales zeros = zeros + 1
scales = scales.reshape(-1, 1, scales.shape[-1]) zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1), self.wf.unsqueeze(-1)).to(torch.int16 if self.bits == 8 else torch.int8) scales = self.scales
weight = torch.bitwise_and(weight,(2 ** self.bits) - 1) scales = scales.reshape(-1, 1, scales.shape[-1])
weight = weight.reshape(-1, self.group_size, weight.shape[2])
weight = torch.bitwise_right_shift(
torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1),
self.wf.unsqueeze(-1)
).to(torch.int16 if self.bits == 8 else torch.int8)
torch.bitwise_and(weight, (2 ** self.bits) - 1, out=weight)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
elif self.bits == 3: elif self.bits == 3:
zeros = self.qzeros.reshape(self.qzeros.shape[0], self.qzeros.shape[1]//3, 3, 1).expand(-1, -1, -1, 12) zeros = self.qzeros.reshape(
zeros = (zeros >> self.wf.unsqueeze(0)) self.qzeros.shape[0], self.qzeros.shape[1] // 3, 3, 1
zeros[:,:,0,10] = (zeros[:,:,0,10]&0x3) | ((zeros[:,:,1,0] << 2)&0x4) ).expand(-1, -1, -1, 12)
zeros[:,:,1,11] = (zeros[:,:,1,11]&0x1) | ((zeros[:,:,2,0] << 1)&0x6) zeros = (zeros >> self.wf.unsqueeze(0))
zeros = zeros & 0x7 zeros[:, :, 0, 10] = (zeros[:, :, 0, 10] & 0x3) | ((zeros[:, :, 1, 0] << 2) & 0x4)
zeros = torch.cat([zeros[:,:,0,:11], zeros[:,:,1,1:12], zeros[:,:,2,1:11]], dim=2) zeros[:, :, 1, 11] = (zeros[:, :, 1, 11] & 0x1) | ((zeros[:, :, 2, 0] << 1) & 0x6)
zeros = zeros & 0x7
zeros = zeros + 1 zeros = torch.cat([zeros[:, :, 0, :11], zeros[:, :, 1, 1:12], zeros[:, :, 2, 1:11]], dim=2)
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
zeros = zeros + 1
scales = self.scales zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
scales = scales.reshape(-1, 1, scales.shape[-1])
scales = self.scales
weight = self.qweight.reshape(self.qweight.shape[0]//3, 3, 1, self.qweight.shape[1]).expand(-1, -1, 12, -1) scales = scales.reshape(-1, 1, scales.shape[-1])
weight = (weight >> self.wf.unsqueeze(-1))&0x7
weight[:,0,10] = (weight[:,0,10]&0x3) | ((weight[:,1,0] << 2)&0x4) weight = self.qweight.reshape(
weight[:,1,11] = (weight[:,1,11]&0x1) | ((weight[:,2,0] << 1)&0x6) self.qweight.shape[0] // 3, 3, 1, self.qweight.shape[1]
weight = weight & 0x7 ).expand(-1, -1, 12, -1)
weight = torch.cat([weight[:,0,:11], weight[:,1,1:12], weight[:,2,1:11]], dim=1) weight = (weight >> self.wf.unsqueeze(-1)) & 0x7
weight = weight.reshape(-1, self.group_size, weight.shape[2]) weight[:, 0, 10] = (weight[:, 0, 10] & 0x3) | ((weight[:, 1, 0] << 2) & 0x4)
weight[:, 1, 11] = (weight[:, 1, 11] & 0x1) | ((weight[:, 2, 0] << 1) & 0x6)
weight = weight & 0x7
weight = torch.cat([weight[:, 0, :11], weight[:, 1, 1:12], weight[:, 2, 1:11]], dim=1)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
else: else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.") raise NotImplementedError("Only 2,3,4,8 bits are supported.")
weight = (scales * (weight - zeros)) weight = (scales * (weight - zeros))
weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2]) weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
out = torch.matmul(x.to(weight.dtype), weight) out = torch.matmul(x.half(), weight)
out = out.half().reshape(out_shape) out = out.reshape(out_shape)
out = out + self.bias if self.bias is not None else out out = out + self.bias if self.bias is not None else out
return out.to(x.dtype) return out
__all__ = ["QuantLinear"] __all__ = ["QuantLinear"]

View file

@ -0,0 +1,493 @@
import math
import numpy as np
import torch
import torch.nn as nn
import transformers
from torch.cuda.amp import custom_bwd, custom_fwd
from logging import getLogger
logger = getLogger(__name__)
try:
import triton
import triton.language as tl
from .triton_utils import custom_autotune
# code based https://github.com/fpgaminer/GPTQ-triton
@custom_autotune.autotune(
configs=[
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
num_stages=2,
num_warps=8
),
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8},
num_stages=3,
num_warps=8
),
triton.Config(
{'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
num_stages=2,
num_warps=4
),
],
key=['M', 'N', 'K'],
nearest_power_of_two=True,
prune_configs_by={
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
'perf_model': None,
'top_k': None,
},
)
@triton.jit
def matmul_248_kernel(
a_ptr, b_ptr, c_ptr,
scales_ptr, zeros_ptr, g_ptr,
M, N, K,
bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr
):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, K) float16
B is of shape (K//8, N) int32
C is of shape (M, N) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + (
(offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_k
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_bn[None, :]
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
shifter = (offs_k % infearure_per_bits) * bits
zeros_shifter = (offs_bn % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, num_pid_k):
g_idx = tl.load(g_ptrs)
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
g_ptrs += BLOCK_SIZE_K
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
@custom_autotune.autotune(configs=[
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8},
num_stages=4,
num_warps=4
),
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
num_stages=2,
num_warps=8
),
triton.Config(
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8},
num_stages=3,
num_warps=8
),
triton.Config(
{'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
num_stages=2,
num_warps=4
),
],
key=['M', 'N', 'K'],
nearest_power_of_two=True
)
@triton.jit
def transpose_matmul_248_kernel(
a_ptr, b_ptr, c_ptr,
scales_ptr, zeros_ptr, g_ptr,
M, N, K,
bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr
):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, N) float16
B is of shape (K//8, N) int32
C is of shape (M, K) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_k
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_k = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
offs_n = tl.arange(0, BLOCK_SIZE_N)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + (
(offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_bk
g_idx = tl.load(g_ptrs)
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
shifter = (offs_bk % infearure_per_bits) * bits
zeros_shifter = (offs_n % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
for k in range(0, num_pid_n):
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
b = tl.trans(b)
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_N
b_ptrs += BLOCK_SIZE_N
scales_ptrs += BLOCK_SIZE_N
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
tl.store(c_ptrs, accumulator, mask=c_mask)
except ImportError:
logger.warning('triton not installed.')
raise
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
with torch.cuda.device(input.device):
output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
grid = lambda META: (
triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),
)
matmul_248_kernel[grid](
input, qweight, output,
scales, qzeros, g_idx,
input.shape[0], qweight.shape[1], input.shape[1],
bits, maxq,
input.stride(0), input.stride(1),
qweight.stride(0), qweight.stride(1),
output.stride(0), output.stride(1),
scales.stride(0), qzeros.stride(0)
)
return output
def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
with torch.cuda.device(input.device):
output_dim = (qweight.shape[0] * 32) // bits
output = torch.empty((input.shape[0], output_dim), device='cuda', dtype=torch.float16)
grid = lambda META: (
triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']),)
transpose_matmul_248_kernel[grid](
input, qweight, output,
scales, qzeros, g_idx,
input.shape[0], qweight.shape[1], output_dim,
bits, maxq,
input.stride(0), input.stride(1),
qweight.stride(0), qweight.stride(1),
output.stride(0), output.stride(1),
scales.stride(0), qzeros.stride(0)
)
return output
class QuantLinearFunction(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq)
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
ctx.bits, ctx.maxq = bits, maxq
return output
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
qweight, scales, qzeros, g_idx = ctx.saved_tensors
bits, maxq = ctx.bits, ctx.maxq
grad_input = None
if ctx.needs_input_grad[0]:
grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
return grad_input, None, None, None, None, None, None
class QuantLinear(nn.Module):
def __init__(
self,
bits,
groupsize,
infeatures,
outfeatures,
bias
):
super().__init__()
if bits not in [2, 4, 8]:
raise NotImplementedError("Only 2,4,8 bits are supported.")
if infeatures % 256 != 0 or outfeatures % 256 != 0:
raise NotImplementedError("in_feature or out_feature must be divisible by 256.")
self.infeatures = infeatures
self.outfeatures = outfeatures
self.bits = bits
self.groupsize = groupsize if groupsize != -1 else infeatures
self.maxq = 2 ** self.bits - 1
self.register_buffer(
'qweight',
torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)
)
self.register_buffer(
'qzeros',
torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32)
)
self.register_buffer(
'scales',
torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16)
)
self.register_buffer(
'g_idx',
torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32)
)
if bias:
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
else:
self.bias = None
def pack(self, linear, scales, zeros, g_idx=None):
W = linear.weight.data.clone()
if isinstance(linear, nn.Conv2d):
W = W.flatten(1)
if isinstance(linear, transformers.pytorch_utils.Conv1D):
W = W.t()
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(
torch.round(
(
W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]
).to(torch.int)[:, None]
)
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
i = 0
row = 0
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
while row < qweight.shape[0]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures,)
out = QuantLinearFunction.apply(
x.reshape(-1, x.shape[-1]),
self.qweight,
self.scales,
self.qzeros,
self.g_idx,
self.bits,
self.maxq
)
out = out.reshape(out_shape)
out = out + self.bias if self.bias is not None else out
return out
def autotune_warmup_linear(model, transpose=False, seqlen=2048):
"""
Pre-tunes the quantized kernel
"""
from tqdm import tqdm
kn_values = {}
for _, m in model.named_modules():
if not isinstance(m, QuantLinear):
continue
k = m.infeatures
n = m.outfeatures
if (k, n) not in kn_values:
kn_values[(k, n)] = (m.qweight.cuda(), m.scales.cuda(), m.qzeros.cuda(), m.g_idx.cuda(), m.bits, m.maxq)
logger.info(f'Found {len(kn_values)} unique KN Linear values.')
logger.info('Warming up autotune cache ...')
with torch.no_grad():
for m in tqdm(range(0, math.ceil(math.log2(seqlen)) + 1)):
m = 2 ** m
for (k, n), (qweight, scales, qzeros, g_idx, bits, maxq) in kn_values.items():
a = torch.randn(m, k, dtype=torch.float16, device='cuda')
matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
if transpose:
a = torch.randn(m, n, dtype=torch.float16, device='cuda')
transpose_matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
del kn_values
__all__ = [
"QuantLinear",
"autotune_warmup_linear"
]

View file

@ -1,402 +0,0 @@
import torch
from torch.cuda.amp import custom_bwd, custom_fwd
from logging import getLogger
import triton
import triton.language as tl
from . import custom_autotune
logger = getLogger(__name__)
# code based https://github.com/fpgaminer/GPTQ-triton
@custom_autotune.autotune(
configs=[
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 256,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 128,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 128,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 128,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=2,
num_warps=8
)
],
key=['M', 'N', 'K'],
nearest_power_of_two=True,
prune_configs_by={
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
'perf_model': None,
'top_k': None,
},
)
@triton.jit
def quant_matmul_248_kernel(
a_ptr, b_ptr, c_ptr,
scales_ptr, zeros_ptr, g_ptr,
M, N, K,
bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr
):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, K) float16
B is of shape (K//8, N) int32
C is of shape (M, N) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + (
(offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_k
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_bn[None, :]
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
shifter = (offs_k % infearure_per_bits) * bits
zeros_shifter = (offs_bn % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, num_pid_k):
g_idx = tl.load(g_ptrs)
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
g_ptrs += BLOCK_SIZE_K
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
@custom_autotune.autotune(
configs=[
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 256,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 128,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 128,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 64,
'GROUP_SIZE_M': 8
},
num_stages=4,
num_warps=4
),
triton.Config(
{
'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 128,
'GROUP_SIZE_M': 8
},
num_stages=2,
num_warps=8
)
],
key=['M', 'N', 'K'],
nearest_power_of_two=True
)
@triton.jit
def transpose_quant_matmul_248_kernel(
a_ptr, b_ptr, c_ptr,
scales_ptr, zeros_ptr, g_ptr,
M, N, K,
bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr
):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, N) float16
B is of shape (K//8, N) int32
C is of shape (M, K) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_k
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_k = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
offs_n = tl.arange(0, BLOCK_SIZE_N)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + (
(offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_bk
g_idx = tl.load(g_ptrs)
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
shifter = (offs_bk % infearure_per_bits) * bits
zeros_shifter = (offs_n % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
for k in range(0, num_pid_n):
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
b = tl.trans(b)
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_N
b_ptrs += BLOCK_SIZE_N
scales_ptrs += BLOCK_SIZE_N
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
tl.store(c_ptrs, accumulator, mask=c_mask)
@triton.jit
def silu(x):
return x * tl.sigmoid(x)
def quant_matmul_248(input, qweight, scales, qzeros, g_idx, bits, maxq):
with torch.cuda.device(input.device):
output = torch.empty((input.shape[0], qweight.shape[1]), device=input.device, dtype=input.dtype)
grid = lambda META: (
triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),
)
quant_matmul_248_kernel[grid](
input, qweight, output,
scales.to(input.dtype), qzeros, g_idx,
input.shape[0], qweight.shape[1], input.shape[1],
bits, maxq,
input.stride(0), input.stride(1),
qweight.stride(0), qweight.stride(1),
output.stride(0), output.stride(1),
scales.stride(0), qzeros.stride(0)
)
return output
def transpose_quant_matmul_248(input, qweight, scales, qzeros, g_idx, bits, maxq):
with torch.cuda.device(input.device):
output_dim = (qweight.shape[0] * 32) // bits
output = torch.empty((input.shape[0], output_dim), device=input.device, dtype=input.dtype)
grid = lambda META: (
triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']),)
transpose_quant_matmul_248_kernel[grid](
input, qweight, output,
scales.to(input.dtype), qzeros, g_idx,
input.shape[0], qweight.shape[1], output_dim,
bits, maxq,
input.stride(0), input.stride(1),
qweight.stride(0), qweight.stride(1),
output.stride(0), output.stride(1),
scales.stride(0), qzeros.stride(0)
)
return output
class QuantLinearFunction(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
output = quant_matmul_248(input, qweight, scales, qzeros, g_idx, bits, maxq)
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
ctx.bits, ctx.maxq = bits, maxq
return output
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
qweight, scales, qzeros, g_idx = ctx.saved_tensors
bits, maxq = ctx.bits, ctx.maxq
grad_input = None
if ctx.needs_input_grad[0]:
grad_input = transpose_quant_matmul_248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
return grad_input, None, None, None, None, None, None
def quant_matmul_inference_only_248(input, qweight, scales, qzeros, g_idx, bits, maxq):
with torch.cuda.device(input.device):
output = torch.empty((input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16)
grid = lambda META: (
triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),
)
quant_matmul_248_kernel[grid](
input, qweight, output,
scales, qzeros, g_idx,
input.shape[0], qweight.shape[1], input.shape[1],
bits, maxq,
input.stride(0), input.stride(1),
qweight.stride(0), qweight.stride(1),
output.stride(0), output.stride(1),
scales.stride(0), qzeros.stride(0)
)
return output
class QuantLinearInferenceOnlyFunction(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
output = quant_matmul_248(input, qweight, scales, qzeros, g_idx, bits, maxq)
return output

View file

@ -1,4 +0,0 @@
class TritonModuleMixin:
@classmethod
def warmup(cls, model, transpose=False, seqlen=2048):
pass

View file

@ -60,7 +60,7 @@ class GPTQ:
self.H += inp.matmul(inp.t()) self.H += inp.matmul(inp.t())
def fasterquant( def fasterquant(
self, blocksize=128, percdamp=.01, group_size=-1, actorder=False, static_groups=False self, blocksize=128, percdamp=.01, groupsize=-1, actorder=False
): ):
W = self.layer.weight.data.clone() W = self.layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d): if isinstance(self.layer, nn.Conv2d):
@ -80,26 +80,10 @@ class GPTQ:
H[dead, dead] = 1 H[dead, dead] = 1
W[:, dead] = 0 W[:, dead] = 0
g_idx = []
scale = []
zero = []
now_idx = 1
if static_groups:
import copy
groups = []
for i in range(0, self.columns, group_size):
quantizer = copy.deepcopy(self.quantizer)
quantizer.find_params(W[:, i:(i + group_size)], weight=True)
scale.append(quantizer.scale)
zero.append(quantizer.zero)
groups.append(quantizer)
if actorder: if actorder:
perm = torch.argsort(torch.diag(H), descending=True) perm = torch.argsort(torch.diag(H), descending=True)
W = W[:, perm] W = W[:, perm]
H = H[perm][:, perm] H = H[perm][:, perm]
invperm = torch.argsort(perm)
Losses = torch.zeros_like(W) Losses = torch.zeros_like(W)
Q = torch.zeros_like(W) Q = torch.zeros_like(W)
@ -112,6 +96,11 @@ class GPTQ:
H = torch.linalg.cholesky(H, upper=True) H = torch.linalg.cholesky(H, upper=True)
Hinv = H Hinv = H
g_idx = []
scale = []
zero = []
now_idx = 1
for i1 in range(0, self.columns, blocksize): for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns) i2 = min(i1 + blocksize, self.columns)
count = i2 - i1 count = i2 - i1
@ -126,21 +115,15 @@ class GPTQ:
w = W1[:, i] w = W1[:, i]
d = Hinv1[i, i] d = Hinv1[i, i]
if group_size != -1: if groupsize != -1:
if not static_groups: if (i1 + i) % groupsize == 0:
if (i1 + i) % group_size == 0: self.quantizer.find_params(W[:, (i1 + i):(i1 + i + groupsize)], weight=True)
self.quantizer.find_params(W[:, (i1 + i):(i1 + i + group_size)], weight=True)
if ((i1 + i) // groupsize) - now_idx == -1:
if ((i1 + i) // group_size) - now_idx == -1: scale.append(self.quantizer.scale)
scale.append(self.quantizer.scale) zero.append(self.quantizer.zero)
zero.append(self.quantizer.zero) now_idx += 1
now_idx += 1
else:
idx = i1 + i
if actorder:
idx = perm[idx]
self.quantizer = groups[idx // group_size]
q = self.quantizer.quantize(w.unsqueeze(1)).flatten() q = self.quantizer.quantize(w.unsqueeze(1)).flatten()
Q1[:, i] = q Q1[:, i] = q
Losses1[:, i] = (w - q) ** 2 / d ** 2 Losses1[:, i] = (w - q) ** 2 / d ** 2
@ -164,13 +147,11 @@ class GPTQ:
logger.info(f'duration: {(time.time() - tick)}') logger.info(f'duration: {(time.time() - tick)}')
logger.info(f'avg loss: {torch.sum(Losses).item() / self.nsamples}') logger.info(f'avg loss: {torch.sum(Losses).item() / self.nsamples}')
group_size = group_size if group_size != -1 else self.columns groupsize = groupsize if groupsize != -1 else self.columns
if static_groups and actorder: g_idx = [i // groupsize for i in range(self.columns)]
g_idx = [perm[i] // group_size for i in range(self.columns)]
else:
g_idx = [i // group_size for i in range(self.columns)]
g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device) g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device)
if actorder: if actorder:
invperm = torch.argsort(perm)
Q = Q[:, invperm] Q = Q[:, invperm]
g_idx = g_idx[invperm] g_idx = g_idx[invperm]

View file

@ -1 +0,0 @@
from .perplexity_utils import Perplexity

View file

@ -1,48 +0,0 @@
import gc
import torch
def exllama_set_max_input_length(model, max_input_length: int):
"""
This method does not necessarily require `model` to inherit from BaseGPTQForCausalLM.
When using the exllama backend with act-order, it is necessary to initialize a buffer that depends on the maximum expected input length. In case the
default used (EXLLAMA_DEFAULT_MAX_INPUT_LENGTH) is too short, this method can be called to extend the buffer size without reloading the whole model.
"""
# The import is set here to avoid a global import. Arguably this is quite ugly, it would be better to have lazy loading.
from exllama_kernels import prepare_buffers, cleanup_buffers_cuda
if not model.quantize_config.desc_act:
raise ValueError("The method exllama_set_max_input_length should be called only when using the exllama backend **with act-order**.")
device_to_buffers_size = {}
for device, buffers in model.device_to_buffers.items():
device_to_buffers_size[device] = {"max_dq_buffer_size": buffers["max_dq_buffer_size"], "max_inner_outer_dim": buffers["max_inner_outer_dim"]}
# For an unknown reason calling just `del model.device_to_buffers` raises an AttributeError.
for key in list(model.device_to_buffers.keys()):
del model.device_to_buffers[key]
model.device_to_buffers = None
del model.device_to_buffers
gc.collect()
torch.cuda.empty_cache()
cleanup_buffers_cuda()
device_to_buffers = {}
for device, buffers_size in device_to_buffers_size.items():
# The temp_state buffer is required to reorder X in the act-order case.
# The temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill.
device_to_buffers[device] = {
"temp_state": torch.zeros((max_input_length, buffers_size["max_inner_outer_dim"]), dtype=torch.float16, device=device),
"temp_dq": torch.zeros((1, buffers_size["max_dq_buffer_size"]), dtype=torch.float16, device=device),
"max_dq_buffer_size": buffers_size["max_dq_buffer_size"],
"max_inner_outer_dim": buffers_size["max_inner_outer_dim"],
}
prepare_buffers(device, device_to_buffers[device]["temp_state"], device_to_buffers[device]["temp_dq"])
# Buffers need to be persistent to avoid any bug.
model.device_to_buffers = device_to_buffers
return model

View file

@ -1,86 +0,0 @@
from packaging.version import parse as parse_version
from logging import getLogger
import torch
try:
import triton
TRITON_AVAILABLE = True
except ImportError:
TRITON_AVAILABLE = False
try:
import autogptq_cuda_256
import autogptq_cuda_64
AUTOGPTQ_CUDA_AVAILABLE = True
except:
AUTOGPTQ_CUDA_AVAILABLE = False
try:
import exllama_kernels
EXLLAMA_KERNELS_AVAILABLE = True
except:
EXLLAMA_KERNELS_AVAILABLE = False
try:
import exllamav2_kernels
EXLLAMAV2_KERNELS_AVAILABLE = True
except:
EXLLAMAV2_KERNELS_AVAILABLE = False
try:
import cQIGen as qinfer
QIGEN_AVAILABLE = True
except:
QIGEN_AVAILABLE = False
logger = getLogger(__name__)
def dynamically_import_QuantLinear(use_triton: bool, desc_act: bool, group_size: int, bits: int, disable_exllama: bool = True, disable_exllamav2:bool = False, use_qigen: bool = False):
if use_qigen:
from ..nn_modules.qlinear.qlinear_qigen import QuantLinear
else:
if use_triton:
if torch.version.hip:
logger.warning("Running GPTQ triton version on AMD GPUs is untested and may result in errors or wrong predictions. Please use use_triton=False.")
from ..nn_modules.qlinear.qlinear_triton import QuantLinear
else:
if bits == 4 and not disable_exllamav2 and EXLLAMAV2_KERNELS_AVAILABLE:
from ..nn_modules.qlinear.qlinear_exllamav2 import QuantLinear
elif bits == 4 and not disable_exllama and EXLLAMA_KERNELS_AVAILABLE:
from ..nn_modules.qlinear.qlinear_exllama import QuantLinear
elif not desc_act or group_size == -1:
from ..nn_modules.qlinear.qlinear_cuda_old import QuantLinear
else:
from ..nn_modules.qlinear.qlinear_cuda import QuantLinear
return QuantLinear
def compare_transformers_version(
version: str = "v4.28.0",
op: str = "eq"
):
assert op in ["eq", "lt", "le", "gt", "ge"]
from transformers import __version__
return getattr(parse_version(__version__), f"__{op}__")(parse_version(version))
def compare_pytorch_version(
version: str = "v2.0.0",
op: str = "eq"
):
assert op in ["eq", "lt", "le", "gt", "ge"]
from torch import __version__
return getattr(parse_version(__version__), f"__{op}__")(parse_version(version))

View file

@ -1,423 +0,0 @@
import warnings
import re
from contextlib import contextmanager
from dataclasses import asdict
from enum import Enum
from typing import List, Optional
import torch
from peft import get_peft_model, PeftConfig, PeftModel, PeftType
from peft.peft_model import PEFT_TYPE_TO_MODEL_MAPPING
from peft.tuners.lora import LoraConfig, LoraLayer, LoraModel, Embedding
from peft.tuners.adalora import AdaLoraConfig, AdaLoraLayer, AdaLoraModel
from peft.mapping import PEFT_TYPE_TO_CONFIG_MAPPING
from peft.utils.other import _get_submodules
from ..modeling._base import BaseGPTQForCausalLM
class GPTQLoraConfig(LoraConfig):
injected_fused_attention: bool = False
injected_fused_mlp: bool = False
class GPTQLoraLinear(torch.nn.Linear, LoraLayer):
def __init__(
self,
adapter_name: str,
linear_module: torch.nn.Linear,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
**kwargs,
):
init_lora_weights = kwargs.pop("init_lora_weights", True)
torch.nn.Linear.__init__(self, linear_module.in_features, linear_module.out_features)
LoraLayer.__init__(self, linear_module.in_features, linear_module.out_features)
self.linear_module = linear_module
self.weight.requires_grad = False
self.weight = self.linear_module.weight
self.bias = self.linear_module.bias
self.fan_in_fan_out = fan_in_fan_out
if fan_in_fan_out:
self.weight.data = self.weight.data.T
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
self.active_adapter = adapter_name
def reset_lora_parameters(self, adapter_name):
if adapter_name in self.lora_A.keys():
torch.nn.init.xavier_uniform_(self.lora_A[adapter_name].weight)
torch.nn.init.zeros_(self.lora_B[adapter_name].weight)
def merge(self):
raise NotImplementedError("gptq model not support merge lora adapter")
def unmerge(self):
raise NotImplementedError("gptq model not support unmerge lora adapter")
def forward(self, x: torch.Tensor):
previous_dtype = x.dtype
if self.active_adapter not in self.lora_A.keys():
return self.linear_module(x)
if self.disable_adapters:
if self.r[self.active_adapter] > 0 and self.merged:
self.unmerge()
result = self.linear_module(x)
elif self.r[self.active_adapter] > 0 and not self.merged:
result = self.linear_module(x)
lora_B = self.lora_B[self.active_adapter]
lora_A = self.lora_A[self.active_adapter]
lora_dropout = self.lora_dropout[self.active_adapter]
scale = self.scaling[self.active_adapter]
x = x.type_as(lora_A.weight.data)
adapter_result = (lora_B(lora_A(lora_dropout(x))) * scale).type_as(result)
result += adapter_result
else:
result = self.linear_module(x)
result = result.to(previous_dtype)
return result
class GPTQLoraModel(LoraModel):
def _find_and_replace(self, adapter_name):
lora_config = self.peft_config[adapter_name]
is_target_modules_in_base_model = False
kwargs = {
"r": lora_config.r,
"lora_alpha": lora_config.lora_alpha,
"lora_dropout": lora_config.lora_dropout,
"fan_in_fan_out": lora_config.fan_in_fan_out,
"init_lora_weights": lora_config.init_lora_weights,
}
key_list = [key for key, _ in self.model.named_modules()]
for key in key_list:
if isinstance(lora_config.target_modules, str):
target_module_found = re.fullmatch(lora_config.target_modules, key)
else:
target_module_found = any(key.endswith(target_key) for target_key in lora_config.target_modules)
if target_module_found:
if not is_target_modules_in_base_model:
is_target_modules_in_base_model = True
parent, target, target_name = _get_submodules(self.model, key)
bias = False
if hasattr(target, "bias"):
bias = target.bias is not None
if isinstance(target, LoraLayer):
target.update_layer(
adapter_name,
lora_config.r,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
else:
if isinstance(target, torch.nn.Embedding):
embedding_kwargs = kwargs.copy()
embedding_kwargs.pop("fan_in_fan_out", None)
in_features, out_features = target.num_embeddings, target.embedding_dim
new_module = Embedding(adapter_name, in_features, out_features, **embedding_kwargs)
else:
if isinstance(target, torch.nn.Linear):
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
else:
raise ValueError(
f"Target module {target} is not supported. "
f"Currently, only `torch.nn.Linear` and its subclasses are supported."
)
new_module = GPTQLoraLinear(adapter_name, target, **kwargs)
self._replace_module(parent, target_name, new_module, target)
if not is_target_modules_in_base_model:
raise ValueError(
f"Target modules {lora_config.target_modules} not found in the base model. "
f"Please check the target modules and try again."
)
def _replace_module(self, parent_module, child_name, new_module, old_module):
setattr(parent_module, child_name, new_module)
if not isinstance(new_module, GPTQLoraLinear):
new_module.weight = old_module.weight
if hasattr(old_module, "bias"):
if old_module.bias is not None:
new_module.bias = old_module.bias
if getattr(old_module, "state", None) is not None:
new_module.state = old_module.state
new_module.to(old_module.weight.device)
# dispatch to correct device
for name, module in new_module.named_modules():
if "lora_" in name:
module.to(old_module.weight.device)
def merge_adapter(self):
raise NotImplementedError("gptq model not support merge ada lora adapter")
def unmerge_adapter(self):
raise NotImplementedError("gptq model not support unmerge ada lora adapter")
def merge_and_unload(self):
raise NotImplementedError("gptq model not support merge and unload")
class GPTQAdaLoraConfig(AdaLoraConfig):
injected_fused_attention: bool = False
injected_fused_mlp: bool = False
class GPTQSVDLinear(torch.nn.Linear, AdaLoraLayer):
def __init__(
self,
adapter_name: str,
linear_module: torch.nn.Linear,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
**kwargs,
):
init_lora_weights = kwargs.pop("init_lora_weights", True)
torch.nn.Linear.__init__(self, linear_module.in_features, linear_module.out_features)
AdaLoraLayer.__init__(self, linear_module.in_features, linear_module.out_features)
self.linear_module = linear_module
self.weight.requires_grad = False
self.weight = self.linear_module.weight
self.bias = self.linear_module.bias
self.fan_in_fan_out = fan_in_fan_out
if fan_in_fan_out:
self.weight.data = self.weight.data.T
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
self.active_adapter = adapter_name
def merge(self):
raise NotImplementedError("gptq model not support merge lora adapter")
def unmerge(self):
raise NotImplementedError("gptq model not support unmerge lora adapter")
def forward(self, x: torch.Tensor):
if self.active_adapter not in self.lora_A.keys():
return self.linear_module(x)
if self.disable_adapters:
if self.r[self.active_adapter] > 0 and self.merged:
self.unmerge()
result = self.linear_module(x)
elif self.r[self.active_adapter] > 0 and not self.merged:
result = self.linear_module(x)
result += (
(
self.lora_dropout[self.active_adapter](x)
@ (self.lora_A[self.active_adapter] * self.lora_E[self.active_adapter]).T
@ self.lora_B[self.active_adapter].T
)
* self.scaling[self.active_adapter]
/ (self.ranknum[self.active_adapter] + 1e-5)
)
else:
result = self.linear_module(x)
return result
class GPTQAdaLoraModel(AdaLoraModel):
def _find_and_replace(self, adapter_name):
lora_config = self.peft_config[adapter_name]
is_target_modules_in_base_model = False
kwargs = {
"r": lora_config.init_r,
"lora_alpha": lora_config.lora_alpha,
"lora_dropout": lora_config.lora_dropout,
"fan_in_fan_out": lora_config.fan_in_fan_out,
"init_lora_weights": lora_config.init_lora_weights,
}
key_list = [key for key, _ in self.model.named_modules()]
for key in key_list:
if isinstance(lora_config.target_modules, str):
target_module_found = re.fullmatch(lora_config.target_modules, key)
else:
target_module_found = any(key.endswith(target_key) for target_key in lora_config.target_modules)
if target_module_found:
if not is_target_modules_in_base_model:
is_target_modules_in_base_model = True
parent, target, target_name = _get_submodules(self.model, key)
bias = target.bias is not None
if isinstance(target, LoraLayer):
target.update_layer(
adapter_name,
lora_config.init_r,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
else:
if isinstance(target, torch.nn.Linear):
in_features, out_features = target.in_features, target.out_features
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
else:
raise ValueError(
f"Target module {target} is not supported. "
f"Currently, only `torch.nn.Linear` and its subclasses are supported."
)
new_module = GPTQSVDLinear(adapter_name, target, **kwargs)
self._replace_module(parent, target_name, new_module, target)
if not is_target_modules_in_base_model:
raise ValueError(
f"Target modules {lora_config.target_modules} not found in the base model. "
f"Please check the target modules and try again."
)
def _replace_module(self, parent_module, child_name, new_module, old_module):
setattr(parent_module, child_name, new_module)
# dispatch to correct device
for name, module in new_module.named_modules():
if "lora_" in name:
module.to(old_module.weight.device)
def merge_adapter(self):
raise NotImplementedError("gptq model not support merge ada lora adapter")
def unmerge_adapter(self):
raise NotImplementedError("gptq model not support unmerge ada lora adapter")
def merge_and_unload(self):
raise NotImplementedError("gptq model not support merge and unload")
def find_all_linear_names(model: BaseGPTQForCausalLM, ignore: Optional[List[str]] = None, ignore_lm_head: bool = True):
if not ignore:
ignore = []
lm_head_name = model.lm_head_name
if ignore_lm_head and lm_head_name not in ignore:
ignore.append(lm_head_name)
results = set()
for n, m in model.named_modules():
if isinstance(m, torch.nn.Linear):
res = n.split('.')[-1]
if res not in ignore:
results.add(res)
return list(results)
@contextmanager
def hijack_peft_mappings():
PEFT_TYPE_TO_CONFIG_MAPPING[PeftType.LORA] = GPTQLoraConfig
PEFT_TYPE_TO_MODEL_MAPPING[PeftType.LORA] = GPTQLoraModel
PEFT_TYPE_TO_CONFIG_MAPPING[PeftType.ADALORA] = GPTQAdaLoraConfig
PEFT_TYPE_TO_MODEL_MAPPING[PeftType.ADALORA] = GPTQAdaLoraModel
try:
yield
except:
PEFT_TYPE_TO_CONFIG_MAPPING[PeftType.LORA] = GPTQLoraConfig
PEFT_TYPE_TO_MODEL_MAPPING[PeftType.LORA] = GPTQLoraModel
PEFT_TYPE_TO_CONFIG_MAPPING[PeftType.ADALORA] = GPTQAdaLoraConfig
PEFT_TYPE_TO_MODEL_MAPPING[PeftType.ADALORA] = GPTQAdaLoraModel
raise
finally:
PEFT_TYPE_TO_CONFIG_MAPPING[PeftType.LORA] = GPTQLoraConfig
PEFT_TYPE_TO_MODEL_MAPPING[PeftType.LORA] = GPTQLoraModel
PEFT_TYPE_TO_CONFIG_MAPPING[PeftType.ADALORA] = GPTQAdaLoraConfig
PEFT_TYPE_TO_MODEL_MAPPING[PeftType.ADALORA] = GPTQAdaLoraModel
def get_gptq_peft_model(
model: BaseGPTQForCausalLM,
peft_config: PeftConfig = None,
model_id: str = None,
adapter_name: str = "default",
auto_find_all_linears: bool = True,
train_mode: bool = False
):
if train_mode and not model.trainable:
model.enable_trainable_mode()
if train_mode and not peft_config:
raise ValueError("peft_config not specified when in train mode.")
if not train_mode and not model_id:
raise ValueError("model_id(where to load adapters) not specified when in inference mode.")
if model.fused_attn_module_type is not None and not model.injected_fused_attention:
peft_types = [PeftType.LORA.value, PeftType.ADALORA.value]
warnings.warn(
f"You can just ignore this warning if the peft type you use isn't in {peft_types}.\n"
f"{model.__class__.__name__} supports injecting fused attention but not enables this time. "
"If you are training adapters, you must also disable fused attention injection when loading quantized "
"base model at inference time, otherwise adapters may not be added to base model properly. "
"If you are loading adapters to do inference, you can reference to adapter's config file to check "
"whether the adapters are trained using base model that not enable fused attention injection."
)
if model.injected_fused_mlp:
raise NotImplementedError("GPTQ model that enables fused mlp injection is not supported to integrate with peft.")
if train_mode:
peft_type = peft_config.peft_type
if not isinstance(peft_type, str):
peft_type = peft_type.value
if peft_type in [PeftType.LORA.value, PeftType.ADALORA.value]:
if auto_find_all_linears:
peft_config.target_modules = find_all_linear_names(model, ignore_lm_head=True)
if peft_type == PeftType.LORA.value and not isinstance(peft_config, GPTQLoraConfig):
peft_config = GPTQLoraConfig(**peft_config.to_dict())
if peft_type == PeftType.ADALORA.value and not isinstance(peft_config, GPTQAdaLoraConfig):
peft_config = GPTQAdaLoraConfig(**peft_config.to_dict())
peft_config.injected_fused_attention = model.injected_fused_attention
peft_config.injected_fused_mlp = model.injected_fused_mlp
if peft_type == PeftType.ADAPTION_PROMPT.value:
if peft_config.adapter_layers > model.config.num_hidden_layers:
warnings.warn(
f"model has only {model.config.num_hidden_layers} layers "
f"but adapter_layers is set to {peft_config.adapter_layers}, "
f"will reset value to {model.config.num_hidden_layers}."
)
peft_config.adapter_layers = model.config.num_hidden_layers
if model.injected_fused_attention:
raise NotImplementedError(
"model with fused attention injected isn't supported to use ADAPTION_PROMPT peft type yet."
)
with hijack_peft_mappings():
try:
if train_mode:
peft_model = get_peft_model(model.model, peft_config, adapter_name=adapter_name)
else:
peft_model = PeftModel.from_pretrained(model.model, model_id, adapter_name)
except:
raise NotImplementedError(
f"{model.__class__.__name__} not support {peft_config.peft_type.value} peft type yet."
)
return peft_model
__all__ = [
"GPTQLoraConfig",
"GPTQLoraModel",
"GPTQAdaLoraConfig",
"GPTQAdaLoraModel",
"find_all_linear_names",
"get_gptq_peft_model"
]

View file

@ -1,215 +0,0 @@
import sys
import torch
import numpy as np
from tqdm import tqdm
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
class Perplexity:
"""
A class for calculating the perplexity of a language model.
"""
def __init__(self, model, tokenizer, dataset_path='wikitext', dataset_name=None, split='test', text_column='text'):
"""
Calculate perplexity using the same method as seen in llama.cpp.
Parameters
----------
model : AutoModelForCausalLM
The language model for which the perplexity is calculated.
tokenizer : AutoTokenizer
The tokenizer corresponding to the model.
device : str, optional
The device to run the calculations on. If auto, the device that your model uses
will be the device used for these calculations. Default is 'auto'.
dataset_path : str, optional
The path to the dataset on the Hugging Face dataset hub. Default is 'wikitext'.
dataset_name : str, optional
The name of the dataset. Default is None.
split : str, optional
The split of the dataset to use. Default is 'test'.
text_column : str, optional
The name of the column in the dataset that contains the text data. Default is 'text'.
"""
self._model = model
self._tokenizer = tokenizer
self._dataset_path = dataset_path
self._dataset_name = dataset_name
self._split = split
self._text_column = text_column
self._text = self._prepare_data()
def _get_device(self):
if torch.backends.mps.is_available():
return 'mps'
elif torch.cuda.is_available():
return 'cuda:0'
else:
return 'cpu'
def _prepare_data(self):
"""
Prepares the dataset by loading and formatting.
Returns
-------
str
The formatted dataset as a single string.
"""
if self._dataset_path == 'wikitext':
self._dataset_name = 'wikitext-2-raw-v1'
# Load the dataset
data = load_dataset(self._dataset_path, self._dataset_name, split=self._split)
# Format the text column of the dataset
text_list = [' \n' if s == '' else s for s in data[self._text_column]]
return ''.join(text_list)
@staticmethod
def softmax(logits):
"""
Static method for applying the softmax function.
Parameters
----------
logits : np.ndarray
The input to the softmax function.
Returns
-------
np.ndarray
The output of the softmax function.
"""
e_x = np.exp(logits - np.max(logits))
return e_x / e_x.sum(axis=0)
def calculate_perplexity(self, n_ctx=512, n_batch=512):
"""
Calculates the perplexity of the language model.
Parameters
----------
n_ctx : int
The context size.
n_batch : int
The batch size.
Returns
-------
list
The list of perplexity scores calculated.
"""
# Tokenize the text
self._tokenizer.model_max_length = sys.maxsize
tokens = self._tokenizer(self._text, truncation=False, return_tensors='pt').input_ids.to(self._model.device)
nll = 0.0 # Negative log likelihood
count = 0 # Counter for processed tokens
curr_ppl = 0
all_perplexity = []
with tqdm(range(len(tokens[0]) // n_ctx), desc="Perplexity: - ") as progress:
for i in progress:
# Process each batch of tokens
nll, count = self._process_batch(i, n_ctx, n_batch, tokens, nll, count)
# Calculate and display the current perplexity
curr_ppl = np.exp(nll / count)
all_perplexity.append(curr_ppl)
progress.set_description(f"Perplexity: {curr_ppl:.4f}")
return all_perplexity
def _process_batch(self, i, n_ctx, n_batch, tokens, nll, count):
"""
Processes each batch of tokens.
Parameters
----------
i : int
The batch index.
n_ctx : int
The context size.
n_batch : int
The batch size.
tokens : torch.Tensor
The tokenized text.
nll : float
The current negative log likelihood.
count : int
The current count of processed tokens.
Returns
-------
float
The updated negative log likelihood.
int
The updated count of processed tokens.
"""
start = i * n_ctx
end = start + n_ctx
num_batches = (n_ctx + n_batch - 1) // n_batch
logits = []
for j in range(num_batches):
batch_start = start + j * n_batch
batch_size = min(end - batch_start, n_batch)
token_org = tokens[0][batch_start].item()
if j == 0:
# Replace the first token with the BOS token
tokens[0][batch_start] = self._tokenizer.bos_token_id
# Compute the logits for the current batch of tokens
batch_logits = self._compute_batch_logits(tokens, batch_start, batch_size)
tokens[0][batch_start] = token_org
logits.append(batch_logits)
# We rely on the fact that attention in the forward pass only looks at previous
# tokens here, so the logits returned for each token are an accurate representation
# of what the model would have predicted at that point.
#
# Example, we have a context window of 512, we will compute perplexity for each of the
# last 256 tokens. Then, we split the input up into context window size chunks to
# process the entire prompt.
for j in range(min(512, n_ctx // 2), n_ctx - 1):
tok_logits = logits[0][0][j].cpu().numpy()
# Compute the probability of the next token
prob = self.softmax(tok_logits)[tokens[0][start + j + 1]]
# Update the negative log likelihood and the count of processed tokens
nll += -np.log(prob, where=prob>0)
count += 1
return nll, count
def _compute_batch_logits(self, tokens, batch_start, batch_size):
"""
Computes the logits for a batch of tokens.
Parameters
----------
tokens : torch.Tensor
The tokenized text.
batch_start : int
The start index of the batch.
batch_size : int
The size of the batch.
Returns
-------
torch.Tensor
The logits for the batch of tokens.
"""
# Compute the logits without keeping track of gradients
with torch.no_grad():
outputs = self._model(tokens[:, batch_start:batch_start+batch_size])
return outputs.logits.detach()

View file

@ -1,187 +0,0 @@
#include <torch/all.h>
#include <torch/python.h>
#include <c10/cuda/CUDAGuard.h>
void vecquant2matmul_cuda(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
torch::Tensor g_idx
);
void vecquant2matmul(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
torch::Tensor g_idx
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant2matmul_cuda(vec, mat, mul, scales, zeros, g_idx);
}
void vecquant3matmul_cuda(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
torch::Tensor g_idx
);
void vecquant3matmul(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
torch::Tensor g_idx
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant3matmul_cuda(vec, mat, mul, scales, zeros, g_idx);
}
void vecquant4matmul_cuda(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
torch::Tensor g_idx
);
void vecquant4matmul(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
torch::Tensor g_idx
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant4matmul_cuda(vec, mat, mul, scales, zeros, g_idx);
}
void vecquant8matmul_cuda(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
torch::Tensor g_idx
);
void vecquant8matmul(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
torch::Tensor g_idx
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant8matmul_cuda(vec, mat, mul, scales, zeros, g_idx);
}
// old
void vecquant2matmul_cuda_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize
);
void vecquant2matmul_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant2matmul_cuda_old(vec, mat, mul, scales, zeros,groupsize);
}
void vecquant3matmul_cuda_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize
);
void vecquant3matmul_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant3matmul_cuda_old(vec, mat, mul, scales, zeros, groupsize);
}
void vecquant4matmul_cuda_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize
);
void vecquant4matmul_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant4matmul_cuda_old(vec, mat, mul, scales, zeros, groupsize);
}
void vecquant8matmul_cuda_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize
);
void vecquant8matmul_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant8matmul_cuda_old(vec, mat, mul, scales, zeros, groupsize);
}
void vecquant2matmul_faster_cuda_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize, int vec_height
);
void vecquant2matmul_faster_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize, int vec_height
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant2matmul_faster_cuda_old(vec, mat, mul, scales, zeros, groupsize, vec_height);
}
void vecquant3matmul_faster_cuda_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize, int vec_height
);
void vecquant3matmul_faster_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize, int vec_height
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant3matmul_faster_cuda_old(vec, mat, mul, scales, zeros, groupsize, vec_height);
}
void vecquant4matmul_faster_cuda_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize, int vec_height
);
void vecquant4matmul_faster_old(
torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
torch::Tensor scales, torch::Tensor zeros,
int groupsize, int vec_height
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
vecquant4matmul_faster_cuda_old(vec, mat, mul, scales, zeros, groupsize, vec_height);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("vecquant2matmul", &vecquant2matmul, "Vector 2-bit Quantized Matrix Multiplication (CUDA) (desc_act)");
m.def("vecquant3matmul", &vecquant3matmul, "Vector 3-bit Quantized Matrix Multiplication (CUDA) (desc_act)");
m.def("vecquant4matmul", &vecquant4matmul, "Vector 4-bit Quantized Matrix Multiplication (CUDA) (desc_act)");
m.def("vecquant8matmul", &vecquant8matmul, "Vector 8-bit Quantized Matrix Multiplication (CUDA) (desc_act)");
m.def("vecquant2matmul_old", &vecquant2matmul_old, "Vector 2-bit Quantized Matrix Multiplication (CUDA)");
m.def("vecquant3matmul_old", &vecquant3matmul_old, "Vector 3-bit Quantized Matrix Multiplication (CUDA)");
m.def("vecquant4matmul_old", &vecquant4matmul_old, "Vector 4-bit Quantized Matrix Multiplication (CUDA)");
m.def("vecquant8matmul_old", &vecquant8matmul_old, "Vector 8-bit Quantized Matrix Multiplication (CUDA)");
m.def("vecquant2matmul_faster_old", &vecquant2matmul_faster_old, "Vector 2-bit Quantized Matrix Multiplication (CUDA), faster version");
m.def("vecquant3matmul_faster_old", &vecquant3matmul_faster_old, "Vector 3-bit Quantized Matrix Multiplication (CUDA), faster version");
m.def("vecquant4matmul_faster_old", &vecquant4matmul_faster_old, "Vector 4-bit Quantized Matrix Multiplication (CUDA), faster version");
}

File diff suppressed because it is too large Load diff

View file

@ -1,58 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _cuda_compat_cuh
#define _cuda_compat_cuh
// atomicAdd for half types, to support CC < 7.x
__device__ __forceinline__ void atomicAdd_half(half* address, half val)
{
unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
__half_raw hsum;
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
half tmpres = __hadd(hsum, val);
hsum = __half_raw(tmpres);
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
old = atomicCAS(address_as_ui, assumed, old);
}
while (assumed != old);
}
// atomicAdd for half2 types
__device__ __forceinline__ void atomicAdd_half2(half2* address, half2 val)
{
unsigned int* address_as_ui = (unsigned int*)address;
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
half2 old_val = *((half2*)&old);
half2 new_val = __hadd2(old_val, val);
old = atomicCAS(address_as_ui, assumed, *((unsigned int*)&new_val));
}
while (assumed != old);
}
//
#if defined(__CUDA_ARCH__) || defined(USE_ROCM)
#if __CUDA_ARCH__ < 700 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half* address, half val) { atomicAdd_half(address, val); }
#if __CUDA_ARCH__ < 600 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half2* address, half2 val) { atomicAdd_half2(address, val); }
#endif
#endif
#endif
#endif

View file

@ -1,75 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#define _cuda_buffers_cu
#include "cuda_buffers.cuh"
CudaBuffers* g_buffers[CUDA_MAX_DEVICES] = {NULL};
// __constant__ half2 q4_table[16][256];
// half2 q4_table_host[16][256];
// bool q4_table_init = false;
CudaBuffers::CudaBuffers
(
int _device,
int _temp_state_size,
half* _temp_state,
half* _temp_dq
) :
device(_device),
temp_state_size(_temp_state_size),
temp_state(_temp_state),
temp_dq(_temp_dq)
{
cudaSetDevice(_device);
cudaStreamCreate(&alt_stream_1);
cudaStreamCreate(&alt_stream_2);
cudaStreamCreate(&alt_stream_3);
cudaEventCreate(&alt_stream_1_done);
cudaEventCreate(&alt_stream_2_done);
cudaEventCreate(&alt_stream_3_done);
}
CudaBuffers::~CudaBuffers()
{
cudaStreamDestroy(alt_stream_1);
cudaStreamDestroy(alt_stream_2);
cudaStreamDestroy(alt_stream_3);
cudaEventDestroy(alt_stream_1_done);
cudaEventDestroy(alt_stream_2_done);
cudaEventDestroy(alt_stream_3_done);
}
CudaBuffers* get_buffers(const int device_index)
{
return g_buffers[device_index];
}
void prepare_buffers_cuda
(
int _device,
int _temp_state_size,
half* _temp_state,
half* _temp_dq
)
{
CudaBuffers* buffers = new CudaBuffers
(
_device,
_temp_state_size,
_temp_state,
_temp_dq
);
g_buffers[_device] = buffers;
}
void cleanup_buffers_cuda()
{
for (int i = 0; i < CUDA_MAX_DEVICES; i++)
{
if (!g_buffers[i]) continue;
delete g_buffers[i];
g_buffers[i] = NULL;
}
}

View file

@ -1,55 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _cuda_buffers_cuh
#define _cuda_buffers_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
const int CUDA_MAX_DEVICES = 16;
// #ifndef _cuda_buffers_cu
// extern __constant__ half2 q4_table[16][256];
// #endif
class CudaBuffers
{
public:
int device;
half* temp_state; // [max_hidden_rows * intermediate_size]
int temp_state_size;
half* temp_dq; // size of largest quant tensor * 8
cudaStream_t alt_stream_1;
cudaStream_t alt_stream_2;
cudaStream_t alt_stream_3;
cudaEvent_t alt_stream_1_done;
cudaEvent_t alt_stream_2_done;
cudaEvent_t alt_stream_3_done;
CudaBuffers
(
int _device,
int _temp_state_size,
half* _temp_state,
half* _temp_dq
);
~CudaBuffers();
};
CudaBuffers* get_buffers(const int device_index);
void prepare_buffers_cuda
(
int _device,
int _temp_state_size,
half* _temp_state,
half* _temp_dq
);
void cleanup_buffers_cuda();
#endif

View file

@ -1,63 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#include "column_remap.cuh"
#include "../util.cuh"
const int SHUF_BLOCKSIZE_X = 256;
const int SHUF_BLOCKSIZE_Y = 16;
__global__ void column_remap_kernel
(
const half* __restrict__ x,
half* __restrict__ x_new,
const int x_width,
const int x_height,
const uint32_t* x_map
)
{
int x_column = SHUF_BLOCKSIZE_X * blockIdx.x + threadIdx.x;
int x_row = SHUF_BLOCKSIZE_Y * blockIdx.y;
if (x_column >= x_width) return;
//if (x_row >= x_height) return;
int x_stride = x_width;
int x_idx = x_row * x_stride + x_column;
int x_row_end = min(x_row + SHUF_BLOCKSIZE_Y, x_height);
int x_idx_end = x_row_end * x_stride + x_column;
int s_column = x_map[x_column];
int s_idx = x_row * x_stride + s_column;
while (x_idx < x_idx_end)
{
x_new[x_idx] = x[s_idx];
x_idx += x_stride;
s_idx += x_stride;
}
}
// Remap columns in x to correspond to sequential group index before matmul
//
// perform x -> seq_x such that seq_x @ seq_w == x @ w
void column_remap_cuda
(
const half* x,
half* x_new,
const int x_height,
const int x_width,
const uint32_t* x_map
)
{
dim3 threads(SHUF_BLOCKSIZE_X, 1, 1);
dim3 blocks
(
(x_width + SHUF_BLOCKSIZE_X - 1) / SHUF_BLOCKSIZE_X,
(x_height + SHUF_BLOCKSIZE_Y - 1) / SHUF_BLOCKSIZE_Y,
1
);
column_remap_kernel<<<blocks, threads>>>(x, x_new, x_width, x_height, x_map);
}

View file

@ -1,19 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _column_remap_cuh
#define _column_remap_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
void column_remap_cuda
(
const half* x,
half* x_new,
const int x_height,
const int x_width,
const uint32_t* x_map
);
#endif

View file

@ -1,260 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#include "q4_matmul.cuh"
#include "column_remap.cuh"
#include "../util.cuh"
#include "../matrix.cuh"
#include "../cu_compat.cuh"
#include "../cuda_buffers.cuh"
#if defined(USE_ROCM)
#include "../hip_compat.cuh"
#endif
const int THREADS_X = 32; // Block size and thread count along columns in w and out
const int THREADS_Y = 1; // Block size and thread count along rows in x and out
typedef void (*fp_q4_matmul_kernel)
(
const half*,
const uint32_t*,
half*,
const half*,
const uint32_t*,
const int,
const int,
const int,
const int,
const int,
const uint32_t*,
bool
);
template<bool use_half2, bool use_groupsize, bool use_x_map>
__global__ void q4_matmul_kernel
(
const half* __restrict__ x,
const uint32_t* __restrict__ w,
half* __restrict__ out,
const half* __restrict__ w_scales,
const uint32_t* __restrict__ w_zeros,
const int height,
const int dim,
const int width,
const int groupsize,
const int block_size_z,
const uint32_t* __restrict__ x_map,
bool no_zero
)
{
// Start of block
int x_column = block_size_z * blockIdx.z;
int x_column_end = min(dim, block_size_z * (blockIdx.z + 1));
int w_column = THREADS_X * blockIdx.x + threadIdx.x;
int x_row = THREADS_Y * blockIdx.y + threadIdx.y;
int iterations = (x_column_end - x_column) / 8;
// Views
MatrixView_half x_(x, height, dim);
MatrixView_half w_scales_(w_scales, dim / groupsize, width);
MatrixView_q4_row w_zeros_(w_zeros, dim / groupsize, width);
MatrixView_q4_column w_(w, dim, width);
MatrixView_half_rw out_(out, height, width);
// Zero output
if (!no_zero && blockIdx.z == 0 && (threadIdx.x & 1) == 0)
{
*((uint32_t*) out_.item_ptr(x_row, w_column)) = 0;
__syncthreads();
}
// Loop over part of x row (and w column)
half2 acc = {};
half acc_h = {};
if constexpr (use_groupsize)
{
// For quant matrices where groupsize divides BLOCK_SIZE_Z we always start on a group boundary, so this
// could be slightly faster
for (int k = x_column, group = x_column / groupsize; k < x_column + iterations * 8; group++, k += groupsize)
{
if constexpr (use_half2)
{
half2 w_scale = w_scales_.item_half2half2(group, w_column);
uint32_t w_zero = w_zeros_.item(group, w_column) + 1;
if constexpr (use_x_map) acc = dot_product_8_x_map(acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8, x_map);
else acc = dot_product_8 (acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8);
}
else
{
half w_scale = w_scales_.item(group, w_column);
uint32_t w_zero = w_zeros_.item(group, w_column) + 1;
if constexpr (use_x_map) acc_h = dot_product_8_x_map_h(acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8, x_map);
else acc_h = dot_product_8_h (acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8);
}
}
}
else
{
// Otherwise assume groupsize is a multiple of 8, do 8 columns per iteration and trust the cache
for (int k = x_column; k < x_column + iterations * 8; k += 8)
{
if constexpr (use_half2)
{
int group = k / groupsize;
half2 w_scale = w_scales_.item_half2half2(group, w_column);
uint32_t w_zero = w_zeros_.item(group, w_column) + 1;
if constexpr (use_x_map) acc = dot_product_8_x_map(acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1, x_map);
else acc = dot_product_8 (acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1);
}
else
{
int group = k / groupsize;
half w_scale = w_scales_.item(group, w_column);
uint32_t w_zero = w_zeros_.item(group, w_column) + 1;
if constexpr (use_x_map) acc_h = dot_product_8_x_map_h(acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1, x_map);
else acc_h = dot_product_8_h (acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1);
}
}
}
// Add to block result
if constexpr (use_half2)
{
half result = __hadd(__low2half(acc), __high2half(acc));
atomicAdd(out_.item_ptr(x_row, w_column), result);
}
else
{
atomicAdd(out_.item_ptr(x_row, w_column), acc_h);
}
}
fp_q4_matmul_kernel q4_matmul_kernel_pick(ExLlamaTuning* tuningParams, int block_size_z, int groupsize, uint32_t* x_map)
{
// <bool use_half2, bool use_groupsize, bool use_x_map>
if (tuningParams->matmul_no_half2) {
if (block_size_z % groupsize == 0) {
if (x_map) return q4_matmul_kernel<false, true, true >;
else return q4_matmul_kernel<false, true, false>;
} else {
if (x_map) return q4_matmul_kernel<false, false, true >;
else return q4_matmul_kernel<false, false, false>;
}
} else {
if (block_size_z % groupsize == 0)
{
if (x_map) return q4_matmul_kernel<true, true, true >;
else return q4_matmul_kernel<true, true, false>;
} else {
if (x_map) return q4_matmul_kernel<true, false, true >;
else return q4_matmul_kernel<true, false, false>;
}
}
};
// Compute y = x @ w
void q4_matmul_cuda
(
ExLlamaTuning* tuningParams,
const half* x,
const int x_height,
const Q4Matrix* w,
half* out,
bool no_zero,
cudaStream_t alt_stream
)
{
int height = x_height;
int dim = w->height;
int width = w->width;
cudaSetDevice(w->device);
uint32_t* x_map = w->cuda_x_map;
const half* x_mapped = x;
if (x_map && !tuningParams->matmul_fused_remap && !alt_stream)
{
CudaBuffers* buffers = get_buffers(w->device);
column_remap_cuda(x, buffers->temp_state, x_height, dim, w->cuda_x_map);
x_mapped = buffers->temp_state;
x_map = NULL;
}
int block_size_z;
if (w->width == 4096) block_size_z = 384; // 7B
else if (w->width == 11008) block_size_z = 256;
else if (w->width == 5120) block_size_z = 384; // 13B
else if (w->width == 13824) block_size_z = 256;
else if (w->width == 6656) block_size_z = 256; // 33B
else if (w->width == 17920) block_size_z = 128;
else block_size_z = 256;
//if (!no_zero) cudaMemsetAsync(out, 0, x_height * w->width * sizeof(half));
dim3 threads(THREADS_X, THREADS_Y, 1);
dim3 blocks
(
(width + threads.x - 1) / threads.x,
(height + threads.y - 1) / threads.y,
(dim + block_size_z - 1) / block_size_z
);
fp_q4_matmul_kernel kernel = q4_matmul_kernel_pick(tuningParams, block_size_z, w->groupsize, x_map);
kernel<<<blocks, threads, 0, alt_stream>>> (x_mapped, w->cuda_qweight, out, w->cuda_scales, w->cuda_qzeros, height, dim, width, w->groupsize, block_size_z, x_map, no_zero);
}
void q4_matmul_recons_cuda
(
ExLlamaTuning* tuningParams,
const half* x,
const int x_height,
Q4Matrix* w,
half* out,
const cublasHandle_t handle,
bool no_zero
)
{
int height = x_height;
int dim = w->height;
int width = w->width;
cudaSetDevice(w->device);
CudaBuffers* buffers = get_buffers(w->device);
const half* x_mapped = x;
if (w->cuda_x_map)
{
TORCH_CHECK(buffers->temp_state_size >= x_height * dim, "The temp_state buffer is too small in the exllama backend. Please call the exllama_set_max_input_length function to increase the buffer size. Example:\nfrom auto_gptq import exllama_set_max_input_length\nmodel = exllama_set_max_input_length(model, 4096)");
column_remap_cuda(x, buffers->temp_state, x_height, dim, w->cuda_x_map);
x_mapped = buffers->temp_state;
}
w->reconstruct(buffers->temp_dq);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 700
const float alpha = 1.0f;
const float beta = no_zero ? 1.0f : 0.0f;
cublasSgemmEx(handle, CUBLAS_OP_N, CUBLAS_OP_N, width, height, dim, &alpha, buffers->temp_dq, CUDA_R_16F, width,
x_mapped, CUDA_R_16F, dim, &beta, out, CUDA_R_16F, width);
#else
const half alpha = __float2half(1.0f);
const half beta = no_zero ? __float2half(1.0f) : __float2half(0.0f);
cublasHgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, width, height, dim, &alpha, buffers->temp_dq, width, x_mapped, dim, &beta, out, width);
#endif
}

View file

@ -1,43 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _q4_matmul_cuh
#define _q4_matmul_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#include <ATen/cuda/CUDAContext.h>
#include "q4_matrix.cuh"
#include "../tuning.h"
// Workaround for hipify_python using rocblas instead of hipblas.
#if defined(USE_ROCM)
#include <hipblas/hipblas.h>
#define rocblas_handle hipblasHandle_t
#endif
void q4_matmul_cuda
(
ExLlamaTuning* tuningParams,
const half* x,
const int x_height,
const Q4Matrix* w,
half* out,
bool no_zero = false,
cudaStream_t alt_stream = NULL
);
void q4_matmul_recons_cuda
(
ExLlamaTuning* tuningParams,
const half* x,
const int x_height,
Q4Matrix* w,
half* out,
const cublasHandle_t handle,
bool no_zero = false
);
#endif

View file

@ -1,225 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#include "q4_matrix.cuh"
#include <vector>
#include "../util.cuh"
#include "../matrix.cuh"
using namespace std;
const int UNSHUF_BLOCKSIZE_X = 64;
const int RECONS_THREADS_X = 64; // Block size and thread count along columns in out, each thread converts 1 column
const int RECONS_THREADS_Y = 1; // Block size and thread count along rows in x and out, each thread converts 8 rows
vector<Q4Matrix*> g_q4_matrices;
void g_q4_keep_matrix(Q4Matrix* m)
{
g_q4_matrices.push_back(m);
}
void g_q4_free_matrices()
{
for (const auto& m : g_q4_matrices) delete m;
g_q4_matrices.clear();
}
Q4Matrix::Q4Matrix
(
const int _height,
const int _width,
const int _groups,
uint32_t* _qweight,
uint32_t* _qzeros,
half* _scales,
uint32_t* _g_idx,
const int _device
) :
height(_height),
width(_width),
groups(_groups),
device(_device)
{
cudaSetDevice(device);
cuda_qweight = _qweight;
cuda_qzeros = _qzeros;
cuda_scales = _scales;
groupsize = height / groups;
if (_g_idx) make_sequential(_g_idx);
}
Q4Matrix::~Q4Matrix()
{
}
// Make sequential
__global__ void make_sequential_kernel
(
const uint32_t* __restrict__ w,
uint32_t* __restrict__ w_new,
const uint32_t* __restrict__ x_map,
const int w_height,
const int w_width
)
{
const uint64_t* w2 = (uint64_t*) w;
uint64_t* w_new2 = (uint64_t*) w_new;
int w2_stride = w_width >> 1;
int w2_column = UNSHUF_BLOCKSIZE_X * blockIdx.x + threadIdx.x;
if (w2_column >= w2_stride) return;
int w_new2_row = blockIdx.y;
int x_map_idx = w_new2_row << 3;
uint64_t dst = 0;
#pragma unroll
for (int i = 0; i < 8; i++)
{
int source_row = x_map[x_map_idx++];
int w2_row = source_row >> 3;
int w2_subrow = source_row & 0x07;
int w2_row_shift = w2_subrow << 2;
int wnew2_row_shift = i << 2;
uint64_t src = w2[w2_row * w2_stride + w2_column];
src >>= w2_row_shift;
src &= 0x0000000f0000000f;
src <<= wnew2_row_shift;
dst |= src;
}
w_new2[w_new2_row * w2_stride + w2_column] = dst;
}
void Q4Matrix::make_sequential(const uint32_t* cpu_g_idx)
{
uint32_t* cuda_new_qweight = NULL;
cudaMalloc(&cuda_new_qweight, height / 8 * width * sizeof(uint32_t));
cudaMalloc(&cuda_x_map, height * sizeof(uint32_t)); // TODO: Should probably be allocated in PyTorch
uint32_t* cpu_g_idx_map = (uint32_t*) calloc(groups, sizeof(uint32_t));
uint32_t* cpu_x_map = (uint32_t*) malloc(height * sizeof(uint32_t));
uint32_t* cpu_x_map_inv = (uint32_t*) malloc(height * sizeof(uint32_t));
// Group histogram
for (int i = 0; i < height; i++) cpu_g_idx_map[cpu_g_idx[i]]++;
// Group map
for (int i = 0, acc = 0; i < groups; i++)
{
short tmp = cpu_g_idx_map[i];
cpu_g_idx_map[i] = acc;
acc += tmp;
}
// X map (inverse)
for (int row = 0; row < height; row++)
{
uint32_t target_group = cpu_g_idx[row];
uint32_t target_row = cpu_g_idx_map[target_group];
cpu_g_idx_map[target_group]++;
cpu_x_map_inv[row] = target_row;
}
// X map
for (int row = 0; row < height; row++) cpu_x_map[cpu_x_map_inv[row]] = row;
// Move to CUDA
cudaMemcpyAsync(cuda_x_map, cpu_x_map, height * sizeof(uint32_t), cudaMemcpyHostToDevice);
// Rearrange rows in w
dim3 threads(UNSHUF_BLOCKSIZE_X, 1, 1);
dim3 blocks
(
(width + UNSHUF_BLOCKSIZE_X * 2 - 1) / (UNSHUF_BLOCKSIZE_X * 2),
height / 8,
1
);
make_sequential_kernel<<<blocks, threads>>>(cuda_qweight, cuda_new_qweight, cuda_x_map, height / 8, width);
// Replace qweights
cudaMemcpyAsync(cuda_qweight, cuda_new_qweight, height / 8 * width * sizeof(uint32_t), cudaMemcpyDeviceToDevice);
// Cleanup
cudaDeviceSynchronize();
cudaFree(cuda_new_qweight);
free(cpu_g_idx_map);
free(cpu_x_map);
free(cpu_x_map_inv);
}
__global__ void reconstruct_kernel
(
const uint32_t* __restrict__ w,
half* __restrict__ out, // (y)
const half* __restrict__ w_scales,
const uint32_t* __restrict__ w_zeros,
const int height,
const int width,
const int groupsize
)
{
// Start of block
int column = RECONS_THREADS_X * blockIdx.x + threadIdx.x;
int row = (RECONS_THREADS_Y * blockIdx.y + threadIdx.y) * 8;
if (column >= width) return;
// Views
MatrixView_q4_column w_(w, height, width);
MatrixView_half_rw out_(out, height, width);
MatrixView_half w_scales_(w_scales, height / groupsize, width);
MatrixView_q4_row w_zeros_(w_zeros, height / groupsize, width);
// Groupsize version
int group = row / groupsize;
half w_scale = w_scales_.item(group, column);
uint32_t w_zero = w_zeros_.item(group, column) + 1;
uint32_t w_read = w_.item_uint32_t(row, column);
half* out_ptr = out_.item_ptr(row, column);
#pragma unroll
for (int s = 0; s < 32; s += 4)
{
half w_item = __hmul(__int2half_rn((int)((w_read >> s) & 0x0f) - w_zero), w_scale);
*out_ptr = w_item; out_ptr += out_.width;
}
}
void Q4Matrix::reconstruct(half* out)
{
dim3 threads(RECONS_THREADS_X, RECONS_THREADS_Y, 1);
dim3 blocks
(
(width + threads.x - 1) / threads.x,
(height / 8 + threads.y - 1) / threads.y,
1
);
reconstruct_kernel<<<blocks, threads>>>(cuda_qweight, out, cuda_scales, cuda_qzeros, height / 8, width, groupsize);
}

View file

@ -1,53 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _q4_matrix_cuh
#define _q4_matrix_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
class Q4Matrix
{
public:
int device;
int height;
int width;
int groups;
int groupsize;
uint32_t* cuda_qweight = NULL;
uint32_t* cuda_qzeros = NULL;
half* cuda_scales = NULL;
uint32_t* cuda_x_map = NULL;
Q4Matrix
(
const int _height,
const int _width,
const int _groups,
uint32_t* _qweight,
uint32_t* _qzeros,
half* _scales,
uint32_t* _g_idx,
const int _device
);
~Q4Matrix();
void reconstruct(half* out);
private:
void make_sequential(const uint32_t* cpu_g_idx);
};
void g_q4_keep_matrix(Q4Matrix* m);
void g_q4_free_matrices();
#endif

View file

@ -1,255 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#include "util.cuh"
#include "tuning.h"
#include "cuda_buffers.cuh"
#include "cuda_func/q4_matrix.cuh"
#include "cuda_func/q4_matmul.cuh"
#include "cuda_func/column_remap.cuh"
// Check CUDA return code. We don't want to include Torch headers in the .cu files because parsing them adds almost a
// minute to the compile time on a 12900K. Also passing exceptions back to Python is super tricky, so in place of
// exceptions, CUDA functions return with a cudaError_t which we can parse and dump to the console.
void check_cuda(cudaError_t ret)
{
switch (ret)
{
case cudaSuccess:
break;
case cudaUnspecified:
printf(" **** Unspecified error\n");
TORCH_CHECK(false, "CUDA error");
break;
default:
printf(" **** CUDA error\n"); \
printf(" **** %s\n", cudaGetErrorString(ret)); \
TORCH_CHECK(false, "CUDA error"); \
break;
}
}
// Some decluttering macros
#define STRINGIFY_(__x) #__x
#define STRINGIFY(__x) STRINGIFY_(__x)
#define TORCH_CHECK_DTYPE(__x, __dtype) TORCH_CHECK((__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype)
#define TORCH_CHECK_DTYPE_OPT(__x, __dtype) TORCH_CHECK((__x).device().is_meta() || (__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype)
#define TORCH_CHECK_SHAPES(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes")
#define TORCH_CHECK_SHAPES_OPT(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).device().is_meta() || (__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes")
#define TORCH_CHECK_SHAPE_MOD(__x, __dim_x, __mod) TORCH_CHECK((__x).size(__dim_x) % __mod == 0, #__x ".shape[" STRINGIFY(__dim_x) "] must be a multiple of " STRINGIFY(__mod))
#define TORCH_CHECK_BUFFER_SIZE(__buffer, __minimum_size) TORCH_CHECK((__buffer).numel() >= __minimum_size, #__buffer " is too small")
#define TORCH_CHECK_DEVICE_INDEX(__index) \
do { \
TORCH_CHECK(__index >= 0, "no device index"); \
TORCH_CHECK(__index < CUDA_MAX_DEVICES, "invalid device index"); \
} while(0)
#define TORCH_CHECK_QUANT(__w, __w_scales, __w_zeros, __seq_g_idx, __x_map) \
do { \
TORCH_CHECK_DTYPE(__w, kInt); \
TORCH_CHECK_DTYPE(__w_scales, kHalf); \
TORCH_CHECK_DTYPE(__w_zeros, kInt); \
TORCH_CHECK_DTYPE_OPT(__seq_g_idx, kShort); \
TORCH_CHECK_DTYPE_OPT(__x_map, kInt); \
TORCH_CHECK_SHAPES_OPT(__seq_g_idx, 0, __w, 0, 2 * 8); \
TORCH_CHECK_SHAPES_OPT(__x_map, 0, __w, 0, 8); \
} while(0)
int get_groupsize(torch::Tensor w, torch::Tensor w_zeros)
{
int groupsize = w.size(0) * 8 / w_zeros.size(0);
TORCH_CHECK(groupsize * w_zeros.size(0) == w.size(0) * 8, "w.shape[-2] must be a multiple of zeros.shape[-2]")
return groupsize;
}
// Tuning parameters
ExLlamaTuning tuningParams;
void set_tuning_params
(
int matmul_recons_thd,
bool matmul_fused_remap,
bool matmul_no_half2
)
{
tuningParams.matmul_recons_thd = matmul_recons_thd;
tuningParams.matmul_fused_remap = matmul_fused_remap;
tuningParams.matmul_no_half2 = matmul_no_half2;
}
// Release all unmanaged objects allocated by the extension
void cleanup()
{
cleanup_buffers_cuda();
g_q4_free_matrices();
}
// Prepare buffers for forward pass
void prepare_buffers
(
torch::Device device,
torch::Tensor temp_state,
torch::Tensor temp_dq
)
{
int device_index = device.index();
TORCH_CHECK_DEVICE_INDEX(device_index);
const at::cuda::OptionalCUDAGuard device_guard(device);
prepare_buffers_cuda
(
device_index,
// buffer size used for sanity checks
temp_state.numel(),
(half*) temp_state.data_ptr(),
(half*) temp_dq.data_ptr()
);
}
// Create Q4Matrix, return handle
uintptr_t make_q4
(
torch::Tensor qweight,
torch::Tensor qzeros,
torch::Tensor scales,
torch::Tensor g_idx,
int device
)
{
TORCH_CHECK_DTYPE(qweight, kInt);
TORCH_CHECK_DTYPE(qzeros, kInt);
TORCH_CHECK_DTYPE(scales, kHalf);
TORCH_CHECK_DTYPE_OPT(g_idx, kInt);
TORCH_CHECK_SHAPES(qweight, 1, qzeros, 1, 8);
TORCH_CHECK_SHAPES(scales, 1, qweight, 1, 1);
TORCH_CHECK_SHAPES(qzeros, 0, scales, 0, 1);
int width = qweight.size(1);
int height = qweight.size(0) * 8;
int groups = qzeros.size(0);
Q4Matrix* m = new Q4Matrix
(
height,
width,
groups,
(uint32_t*) qweight.data_ptr(),
(uint32_t*) qzeros.data_ptr(),
(half*) scales.data_ptr(),
g_idx.device().is_meta() ? NULL : (uint32_t*) g_idx.data_ptr(),
device
);
g_q4_keep_matrix(m);
return reinterpret_cast<uintptr_t> (m);
}
// Matmul half @ quant -> half
void q4_matmul
(
torch::Tensor x,
uintptr_t w,
torch::Tensor out
)
{
Q4Matrix* wm = reinterpret_cast<Q4Matrix*> (w);
TORCH_CHECK_DTYPE(x, kHalf);
TORCH_CHECK_DTYPE(out, kHalf);
TORCH_CHECK_SHAPES(x, 0, out, 0, 1);
TORCH_CHECK(wm->height == x.size(-1), "x and w have incompatible shapes")
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
int x_height = x.size(0);
if (tuningParams.matmul_recons_thd == 0 || x_height < tuningParams.matmul_recons_thd)
{
q4_matmul_cuda
(
&tuningParams,
(half*) x.data_ptr(),
x_height,
wm,
(half*) out.data_ptr()
);
}
else
{
q4_matmul_recons_cuda
(
&tuningParams,
(half*) x.data_ptr(),
x_height,
wm,
(half*) out.data_ptr(),
at::cuda::getCurrentCUDABlasHandle()
);
}
}
// Remap columns in half tensor
void column_remap
(
torch::Tensor x,
torch::Tensor x_new,
torch::Tensor x_map
)
{
TORCH_CHECK_DTYPE(x, kHalf);
TORCH_CHECK_DTYPE(x_new, kHalf);
TORCH_CHECK_DTYPE(x_map, kInt);
TORCH_CHECK_SHAPES(x_map, 0, x, 1, 1);
int height = x.size(0);
int width = x.size(1);
TORCH_CHECK_BUFFER_SIZE(x_new, height * width);
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
column_remap_cuda
(
(half*) x.data_ptr(),
(half*) x_new.data_ptr(),
height,
width,
(uint32_t*) x_map.data_ptr()
);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
m.def("set_tuning_params", &set_tuning_params, "set_tuning_params");
m.def("prepare_buffers", &prepare_buffers, "prepare_buffers");
m.def("cleanup", &cleanup, "cleanup");
m.def("make_q4", &make_q4, "make_q4");
m.def("q4_matmul", &q4_matmul, "q4_matmul");
m.def("cleanup_buffers_cuda", &cleanup_buffers_cuda, "cleanup_buffers_cuda");
}

View file

@ -1,49 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _hip_compat_cuh
#define _hip_compat_cuh
// Workaround for a bug in hipamd, backported from upstream.
__device__ __forceinline__ __half __compat_hrcp(__half x) {
return __half_raw{
static_cast<_Float16>(__builtin_amdgcn_rcph(static_cast<__half_raw>(x).data))};
}
__device__ __forceinline__ __half2 __compat_h2rcp(__half2 x) {
return _Float16_2{static_cast<_Float16>(__builtin_amdgcn_rcph(x.x)),
static_cast<_Float16>(__builtin_amdgcn_rcph(x.y))};
}
#define hrcp __compat_hrcp
#define h2rcp __compat_h2rcp
// Workaround for hipify_python using rocblas instead of hipblas.
__host__ __forceinline__ hipblasStatus_t __compat_hipblasHgemm(hipblasHandle_t handle,
hipblasOperation_t transA,
hipblasOperation_t transB,
int m,
int n,
int k,
const half* alpha,
const half* AP,
int lda,
const half* BP,
int ldb,
const half* beta,
half* CP,
int ldc) {
return hipblasHgemm(handle, transA, transB, m, n, k,
reinterpret_cast<const hipblasHalf *>(alpha),
reinterpret_cast<const hipblasHalf *>(AP), lda,
reinterpret_cast<const hipblasHalf *>(BP), ldb,
reinterpret_cast<const hipblasHalf *>(beta),
reinterpret_cast<hipblasHalf *>(CP), ldc);
}
#define rocblas_handle hipblasHandle_t
#define rocblas_operation_none HIPBLAS_OP_N
#define rocblas_get_stream hipblasGetStream
#define rocblas_set_stream hipblasSetStream
#define rocblas_hgemm __compat_hipblasHgemm
#endif

View file

@ -1,294 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _matrix_cuh
#define _matrix_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
class MatrixView_half
{
public:
const half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half(const half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half2 item_half2half2(int row, int column) const { return __half2half2(data[row * width + column]); }
__device__ __forceinline__ const half* item_ptr(int row, int column) const { return &data[row * width + column]; }
};
class MatrixView_half_rw
{
public:
half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half_rw(half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half* item_ptr(int row, int column) { return &data[row * width + column]; }
__device__ __forceinline__ void set(int row, int column, half value) { data[row * width + column] = value; }
__device__ __forceinline__ void set_half2(int row, int column, half2 value) { ((half2*)data)[(row * width + column) / 2] = value; }
};
class MatrixView_q4_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q4_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x07) * 4;
return (data[row * width / 8 + column / 8] >> shift) & 0x0f;
}
};
class MatrixView_q4_column
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q4_column(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (row & 0x07) * 4;
return (data[row / 8 * width + column] >> shift) & 0x0f;
}
__device__ __forceinline__ uint32_t item_uint32_t(int row, int column) { return data[row / 8 * width + column]; }
__device__ __forceinline__ const uint32_t* item_uint32_ptr(int row, int column) { return &data[row / 8 * width + column]; }
};
// TODO: Rewrite all these dot product functions using functors or something, move to q4_matmul.cu
// Accumulated dot product of 8-element row vectors in h and quantized column vectors in v, constant zero/scale
__device__ __forceinline__ half2 dot_product_8
(
const half2 acc,
MatrixView_half& h_,
const int h_row,
const int h_column, // divisible by 8
MatrixView_q4_column& v_,
const int v_row, // divisible by 8
const int v_column,
const half2 v_scale_2,
const uint32_t v_zero, // + 1 (!!)
const int count
)
{
const half2* h_ptr = (const half2*) h_.item_ptr(h_row, h_column);
const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column);
half2 result = acc;
for (int i = 0; i < count; i++)
{
uint32_t v_read = *v_ptr; v_ptr += v_.width;
half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero);
half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero);
half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero);
half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero);
half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero);
half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero);
half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero);
half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero);
half2 v_01 = __halves2half2(v_0, v_1);
half2 v_23 = __halves2half2(v_2, v_3);
half2 v_45 = __halves2half2(v_4, v_5);
half2 v_67 = __halves2half2(v_6, v_7);
// half2 v_01 = q4_table[v_zero - 1][(v_read ) & 0xff]; // (constant memory is too slow apparently)
// half2 v_23 = q4_table[v_zero - 1][(v_read >> 8) & 0xff];
// half2 v_45 = q4_table[v_zero - 1][(v_read >> 16) & 0xff];
// half2 v_67 = q4_table[v_zero - 1][(v_read >> 24) ];
half2 tmp = __hmul2(*h_ptr++, v_01);
tmp = __hfma2(*h_ptr++, v_23, tmp);
tmp = __hfma2(*h_ptr++, v_45, tmp);
tmp = __hfma2(*h_ptr++, v_67, tmp);
result = __hfma2(v_scale_2, tmp, result);
}
return result;
}
__device__ __forceinline__ half dot_product_8_h
(
const half acc,
MatrixView_half& h_,
const int h_row,
const int h_column, // divisible by 8
MatrixView_q4_column& v_,
const int v_row, // divisible by 8
const int v_column,
const half v_scale,
const uint32_t v_zero, // + 1 (!!)
const int count
)
{
const half* h_ptr = h_.item_ptr(h_row, h_column);
const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column);
half result = acc;
for (int i = 0; i < count; i++)
{
uint32_t v_read = *v_ptr; v_ptr += v_.width;
half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero);
half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero);
half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero);
half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero);
half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero);
half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero);
half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero);
half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero);
half tmp = __hmul(*h_ptr++, v_0);
tmp = __hfma(*h_ptr++, v_1, tmp);
tmp = __hfma(*h_ptr++, v_2, tmp);
tmp = __hfma(*h_ptr++, v_3, tmp);
tmp = __hfma(*h_ptr++, v_4, tmp);
tmp = __hfma(*h_ptr++, v_5, tmp);
tmp = __hfma(*h_ptr++, v_6, tmp);
tmp = __hfma(*h_ptr++, v_7, tmp);
result = __hfma(v_scale, tmp, result);
}
return result;
}
// Accumulated dot product of 8-element row vectors in h and quantized column vectors in v, constant zero/scale, with x_map
__device__ __forceinline__ half2 dot_product_8_x_map
(
const half2 acc,
MatrixView_half& h_,
const int h_row,
const int h_column, // divisible by 8
MatrixView_q4_column& v_,
const int v_row, // divisible by 8
const int v_column,
const half2 v_scale_2,
const uint32_t v_zero, // + 1 (!!)
const int count,
const uint32_t* x_map
)
{
const half* h_ptr = h_.item_ptr(h_row, 0);
const uint32_t* x_map_ptr = x_map + h_column;
const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column);
half2 result = acc;
for (int i = 0; i < count; i++)
{
uint32_t v_read = *v_ptr; v_ptr += v_.width;
half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero);
half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero);
half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero);
half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero);
half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero);
half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero);
half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero);
half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero);
half2 v_01 = __halves2half2(v_0, v_1);
half2 v_23 = __halves2half2(v_2, v_3);
half2 v_45 = __halves2half2(v_4, v_5);
half2 v_67 = __halves2half2(v_6, v_7);
half h_0 = h_ptr[*x_map_ptr++];
half h_1 = h_ptr[*x_map_ptr++];
half h_2 = h_ptr[*x_map_ptr++];
half h_3 = h_ptr[*x_map_ptr++];
half h_4 = h_ptr[*x_map_ptr++];
half h_5 = h_ptr[*x_map_ptr++];
half h_6 = h_ptr[*x_map_ptr++];
half h_7 = h_ptr[*x_map_ptr++];
half2 h_01 = __halves2half2(h_0, h_1);
half2 h_23 = __halves2half2(h_2, h_3);
half2 h_45 = __halves2half2(h_4, h_5);
half2 h_67 = __halves2half2(h_6, h_7);
half2 tmp = __hmul2(h_01, v_01);
tmp = __hfma2(h_23, v_23, tmp);
tmp = __hfma2(h_45, v_45, tmp);
tmp = __hfma2(h_67, v_67, tmp);
result = __hfma2(v_scale_2, tmp, result);
}
return result;
}
__device__ __forceinline__ half dot_product_8_x_map_h
(
const half acc,
MatrixView_half& h_,
const int h_row,
const int h_column, // divisible by 8
MatrixView_q4_column& v_,
const int v_row, // divisible by 8
const int v_column,
const half v_scale,
const uint32_t v_zero, // + 1 (!!)
const int count,
const uint32_t* x_map
)
{
const half* h_ptr = h_.item_ptr(h_row, 0);
const uint32_t* x_map_ptr = x_map + h_column;
const uint32_t* v_ptr = (const uint32_t*) v_.item_uint32_ptr(v_row, v_column);
half result = acc;
for (int i = 0; i < count; i++)
{
uint32_t v_read = *v_ptr; v_ptr += v_.width;
half v_0 = __int2half_rn((int)((v_read ) & 0x0f) - v_zero);
half v_1 = __int2half_rn((int)((v_read >> 4) & 0x0f) - v_zero);
half v_2 = __int2half_rn((int)((v_read >> 8) & 0x0f) - v_zero);
half v_3 = __int2half_rn((int)((v_read >> 12) & 0x0f) - v_zero);
half v_4 = __int2half_rn((int)((v_read >> 16) & 0x0f) - v_zero);
half v_5 = __int2half_rn((int)((v_read >> 20) & 0x0f) - v_zero);
half v_6 = __int2half_rn((int)((v_read >> 24) & 0x0f) - v_zero);
half v_7 = __int2half_rn((int)((v_read >> 28) ) - v_zero);
half tmp = __hmul(h_ptr[*x_map_ptr++], v_0);
tmp = __hfma(h_ptr[*x_map_ptr++], v_1, tmp);
tmp = __hfma(h_ptr[*x_map_ptr++], v_2, tmp);
tmp = __hfma(h_ptr[*x_map_ptr++], v_3, tmp);
tmp = __hfma(h_ptr[*x_map_ptr++], v_4, tmp);
tmp = __hfma(h_ptr[*x_map_ptr++], v_5, tmp);
tmp = __hfma(h_ptr[*x_map_ptr++], v_6, tmp);
tmp = __hfma(h_ptr[*x_map_ptr++], v_7, tmp);
result = __hfma(v_scale, tmp, result);
}
return result;
}
#endif

View file

@ -1,13 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _tuning_h
#define _tuning_h
struct ExLlamaTuning
{
int matmul_recons_thd;
bool matmul_fused_remap;
bool matmul_no_half2;
};
#endif

View file

@ -1,33 +0,0 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _util_cuh
#define _util_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#if defined(USE_ROCM)
#define cudaUnspecified hipErrorUnknown
#else
#define cudaUnspecified cudaErrorApiFailureBase
#endif
// React to failure on return code != cudaSuccess
#define _cuda_check(fn) \
do { \
{_cuda_err = fn;} \
if (_cuda_err != cudaSuccess) goto _cuda_fail; \
} while(false)
// React to failure on return code == 0
#define _alloc_check(fn) \
do { \
if (!(fn)) { _cuda_err = cudaUnspecified; goto _cuda_fail; } \
else _cuda_err = cudaSuccess; \
} while(false)
#endif

View file

@ -1,13 +0,0 @@
#ifndef _config_h
#define _config_h
#define MAX_Q_GEMM_ROWS 50
#define QMODE_2BIT 1
#define QMODE_3BIT 1
#define QMODE_4BIT 1
#define QMODE_5BIT 1
#define QMODE_6BIT 0
#define QMODE_8BIT 0
#endif

View file

@ -1,12 +0,0 @@
#ifndef _util_h
#define _util_h
#define DBGS(__x) printf("%s\n", __x)
#define DBGI(__x) printf("%s: %i\n", #__x, __x)
#define DBGI2(__x, __y) printf("%s, %s: %i, %i\n", #__x, #__y, __x, __y)
#define DBGI3(__x, __y, __z) printf("%s, %s, %s: %i, %i, %i\n", #__x, #__y, #__z, __x, __y, __z)
#define DBGF(__x) printf("%s: %f\n", #__x, __x)
#define DBGF2(__x, __y) printf("%s, %s: %f, %f\n", #__x, #__y, __x, __y)
#define DBGF3(__x, __y, __z) printf("%s, %s, %s: %f, %f, %f\n", #__x, #__y, #__z, __x, __y, __z)
#endif

View file

@ -1,56 +0,0 @@
#ifndef _compat_cuh
#define _compat_cuh
// atomicAdd for half types, to support CC < 7.x
__device__ __forceinline__ void atomicAdd_half(half* address, half val)
{
unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
__half_raw hsum;
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
half tmpres = __hadd(hsum, val);
hsum = __half_raw(tmpres);
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
old = atomicCAS(address_as_ui, assumed, old);
}
while (assumed != old);
}
// atomicAdd for half2 types
__device__ __forceinline__ void atomicAdd_half2(half2* address, half2 val)
{
unsigned int* address_as_ui = (unsigned int*)address;
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
half2 old_val = *((half2*)&old);
half2 new_val = __hadd2(old_val, val);
old = atomicCAS(address_as_ui, assumed, *((unsigned int*)&new_val));
}
while (assumed != old);
}
//
#if defined(__CUDA_ARCH__) || defined(USE_ROCM)
#if __CUDA_ARCH__ < 700 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half* address, half val) { atomicAdd_half(address, val); }
#if __CUDA_ARCH__ < 600 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half2* address, half2 val) { atomicAdd_half2(address, val); }
#endif
#endif
#endif
#endif

View file

@ -1,121 +0,0 @@
#ifndef _matrix_view_cuh
#define _matrix_view_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "quant/qdq_util.cuh"
class MatrixView_half
{
public:
const half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half(const half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half2 item_half2half2(int row, int column) const { return __half2half2(data[row * width + column]); }
__device__ __forceinline__ const half* item_ptr(int row, int column) const { return &data[row * width + column]; }
__device__ __forceinline__ void item4(half (&items)[4], int row, int column) const
{
half2* ptr = (half2*) item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __low2half(i01);
items[1] = __high2half(i01);
items[2] = __low2half(i23);
items[3] = __high2half(i23);
}
__device__ __forceinline__ void item4_f(float (&items)[4], int row, int column) const
{
half2* ptr = (half2*)item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __half2float(__low2half(i01));
items[1] = __half2float(__high2half(i01));
items[2] = __half2float(__low2half(i23));
items[3] = __half2float(__high2half(i23));
}
__device__ __forceinline__ void item4_h2(half2 (&items)[4], int row, int column) const
{
half2* ptr = (half2*)item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __half2half2(__low2half(i01));
items[1] = __half2half2(__high2half(i01));
items[2] = __half2half2(__low2half(i23));
items[3] = __half2half2(__high2half(i23));
}
};
class MatrixView_half_rw
{
public:
half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half_rw(half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half* item_ptr(int row, int column) { return &data[row * width + column]; }
__device__ __forceinline__ void set(int row, int column, half value) { data[row * width + column] = value; }
__device__ __forceinline__ void set_half2(int row, int column, half2 value) { ((half2*)data)[(row * width + column) / 2] = value; }
__device__ __forceinline__ void set4(int row, int column, half v0, half v1, half v2, half v3)
{
half2 v01 = __halves2half2(v0, v1);
half2 v23 = __halves2half2(v2, v3);
half2* ptr = (half2*) item_ptr(row, column);
ptr[0] = v01;
ptr[1] = v23;
}
};
class MatrixView_q4_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q4_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x07) * 4;
return (data[row * width / 8 + column / 8] >> shift) & 0x0f;
}
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x07) * 4;
uint32_t d = data[row * width / 8 + column / 8] >> shift;
items[0] = d & 0x0f;
items[1] = (d >> 4) & 0x0f;
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x07) * 4;
uint32_t d = data[row * width / 8 + column / 8] >> shift;
items[0] = d & 0x0f;
items[1] = (d >> 4) & 0x0f;
items[2] = (d >> 8) & 0x0f;
items[3] = (d >> 12) & 0x0f;
}
};
#endif

View file

@ -1,238 +0,0 @@
#include "q_gemm.cuh"
#include "util.cuh"
#include "matrix_view.cuh"
#include "../config.h"
#include "quant/qdq_2.cuh"
#include "quant/qdq_3.cuh"
#include "quant/qdq_4.cuh"
#include "quant/qdq_5.cuh"
#include "quant/qdq_6.cuh"
#include "quant/qdq_8.cuh"
#define BLOCK_KN_SIZE 128
#define BLOCK_M_SIZE_MAX 8
#define MAX_GROUPS_IN_BLOCK (BLOCK_KN_SIZE / 32)
#define CLEAR_N_SIZE 256
#include "q_gemm_kernel.cuh"
#include "q_gemm_kernel_gptq.cuh"
#if defined(USE_ROCM)
__host__ __forceinline__ hipblasStatus_t __compat_hipblasHgemm(hipblasHandle_t handle,
hipblasOperation_t transA,
hipblasOperation_t transB,
int m,
int n,
int k,
const half* alpha,
const half* AP,
int lda,
const half* BP,
int ldb,
const half* beta,
half* CP,
int ldc) {
return hipblasHgemm(handle, transA, transB, m, n, k,
reinterpret_cast<const hipblasHalf *>(alpha),
reinterpret_cast<const hipblasHalf *>(AP), lda,
reinterpret_cast<const hipblasHalf *>(BP), ldb,
reinterpret_cast<const hipblasHalf *>(beta),
reinterpret_cast<hipblasHalf *>(CP), ldc);
}
#define hipblasHgemm __compat_hipblasHgemm
// Previous version of PyTorch were converting to rocBLAS instead of hipBLAS.
#define rocblas_operation_none HIPBLAS_OP_N
#define rocblas_hgemm __compat_hipblasHgemm
#endif
void gemm_half_q_half_cuda_part
(
const half* a,
QMatrix* b,
half* c,
int size_m,
int size_n,
int size_k,
int m_count,
bool clear
)
{
if (!b->is_gptq)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
blockDim.z = 1;
gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE * 4);
gridDim.y = DIVIDE(size_m, m_count);
gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);
fp_gemm_half_q_half_kernel kernel = pick_gemm_half_q_half_kernel(true, m_count);
kernel<<<gridDim, blockDim>>>
(
a,
b->cuda_q_weight,
b->cuda_q_scale,
b->cuda_q_scale_max,
c,
size_m,
size_n,
size_k,
b->groups,
b->groupsize,
b->cuda_q_perm,
b->rows_8,
b->rows_6,
b->rows_5,
b->rows_4,
b->rows_3,
b->rows_2,
clear
);
}
else
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
blockDim.z = 1;
gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE * 4);
gridDim.y = DIVIDE(size_m, m_count);
gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);
fp_gemm_half_q_half_gptq_kernel kernel = pick_gemm_half_q_half_gptq_kernel(true, m_count);
// DBGX((uint64_t) b->cuda_q_perm);
// DBGI(b->rows_4);
// DBGI(b->height);
kernel<<<gridDim, blockDim>>>
(
a,
b->cuda_q_weight,
b->cuda_gptq_qzeros,
b->cuda_gptq_scales,
c,
size_m,
size_n,
size_k,
b->groups,
b->groupsize,
b->cuda_q_perm,
b->rows_4,
clear
);
}
}
void gemm_half_q_half_cuda
(
cublasHandle_t cublas_handle,
const half* a,
QMatrix* b,
half* c,
int size_m,
int size_n,
int size_k,
bool clear,
half* temp_dq,
bool force_cuda
)
{
if (size_m > MAX_Q_GEMM_ROWS && !force_cuda)
{
//printf("cublas\n");
// Reconstruct FP16 matrix, then cuBLAS
if (!temp_dq) temp_dq = b->temp_dq;
b->reconstruct(temp_dq);
//cublasSetMathMode(cublas_handle, CUBLAS_TENSOR_OP_MATH);
const half alpha = __float2half(1.0f);
const half beta = clear ? __float2half(0.0f) : __float2half(1.0f);
cublasHgemm(cublas_handle,
CUBLAS_OP_N,
CUBLAS_OP_N,
size_n, size_m, size_k,
&alpha, temp_dq, size_n,
a, size_k,
&beta, c, size_n);
//const float alpha = 1.0f;
//const float beta = clear ? 0.0f : 1.0f;
//cublasSgemmEx(cublas_handle,
// CUBLAS_OP_N,
// CUBLAS_OP_N,
// size_n, size_m, size_k,
// &alpha, temp_dq, CUDA_R_16F, size_n,
// a, CUDA_R_16F, size_k,
// &beta, c, CUDA_R_16F, size_n);
//const float alpha = 1.0f;
//const float beta = clear ? 0.0f : 1.0f;
//cublasGemmEx(cublas_handle,
// CUBLAS_OP_N, CUBLAS_OP_N,
// size_n, size_m, size_k,
// &alpha, temp_dq, CUDA_R_16F, size_n,
// a, CUDA_R_16F, size_k,
// &beta, c, CUDA_R_16F, size_n,
// CUDA_R_16F, CUBLAS_GEMM_DFALT_TENSOR_OP);
}
else
{
//printf("cuda\n");
// Quantized matmul
//if (clear) clear_tensor_cuda(c, size_m, size_n);
int max_chunks = size_m / BLOCK_M_SIZE_MAX;
int last_chunk = max_chunks * BLOCK_M_SIZE_MAX;
int last_chunk_size = size_m - last_chunk;
if (max_chunks)
{
gemm_half_q_half_cuda_part(a, b, c, last_chunk, size_n, size_k, BLOCK_M_SIZE_MAX, clear);
}
if (last_chunk_size)
{
gemm_half_q_half_cuda_part(a + last_chunk * size_k, b, c + last_chunk * size_n, last_chunk_size, size_n, size_k, last_chunk_size, clear);
}
}
}
__global__ void clear_kernel
(
half* __restrict__ c,
const int size_m,
const int size_n
)
{
int m = blockIdx.y;
int n = (blockIdx.x * CLEAR_N_SIZE + threadIdx.x) * 8;
if (n >= size_n) return;
int4* c_ptr = (int4*)(c + m * size_n + n);
*c_ptr = {};
}
void clear_tensor_cuda
(
half* c,
int size_m,
int size_n
)
{
return;
dim3 blockDim, gridDim;
blockDim.x = CLEAR_N_SIZE;
blockDim.y = 1;
gridDim.x = DIVIDE(size_n / 8, CLEAR_N_SIZE);
gridDim.y = size_m;
clear_kernel<<<gridDim, blockDim>>>(c, size_m, size_n);
}

View file

@ -1,33 +0,0 @@
#ifndef _q_gemm_cuh
#define _q_gemm_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#include <ATen/cuda/CUDAContext.h>
#include "q_matrix.cuh"
void gemm_half_q_half_cuda
(
cublasHandle_t cublas_handle,
const half* a,
QMatrix* b,
half* c,
int size_m,
int size_n,
int size_k,
bool clear = false,
half* reconstruct = NULL,
bool force_cuda = false
);
void clear_tensor_cuda
(
half* c,
int size_m,
int size_n
);
#endif

View file

@ -1,484 +0,0 @@
#include "compat.cuh"
__forceinline__ __device__ half2 dot22_8(half2(&dq)[4], const half* a_ptr, const half2 g_result, const half qs_h)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __hfma2(result, __halves2half2(qs_h, qs_h), g_result);
}
__forceinline__ __device__ half2 dot22_16(half2(&dq)[8], const half* a_ptr, const half2 g_result, const half qs_h)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __hfma2(result, __halves2half2(qs_h, qs_h), g_result);
}
__forceinline__ __device__ half2 dot22_32(half2(&dq)[16], const half* a_ptr, const half2 g_result, const half qs_h)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result);
return __hfma2(result, __halves2half2(qs_h, qs_h), g_result);
}
__forceinline__ __device__ float dot22_8_f(half2(&dq)[4], const half* a_ptr, const float g_result, const float qs_f)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
float result_f = __half2float(__low2half(result)) + __half2float(__high2half(result));
return fma(result_f, qs_f, g_result);
}
__forceinline__ __device__ float dot22_16_f(half2(&dq)[8], const half* a_ptr, const float g_result, const float qs_f)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result);
float result_f = __half2float(__low2half(result)) + __half2float(__high2half(result));
return fma(result_f, qs_f, g_result);
}
__forceinline__ __device__ float dot22_32_f(half2(&dq)[16], const half* a_ptr, const float g_result, const float qs_f)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result);
float result_f = __half2float(__low2half(result)) + __half2float(__high2half(result));
return fma(result_f, qs_f, g_result);
}
typedef void (*fp_gemm_half_q_half_kernel)
(
const half*,
const uint32_t*,
const uint32_t*,
const half*,
half*,
const int,
const int,
const int,
const int,
const int,
const uint16_t*,
const int,
const int,
const int,
const int,
const int,
const int,
const bool
);
template <bool first_block, int m_count>
__global__ void gemm_half_q_half_kernel
(
const half* __restrict__ a,
const uint32_t* __restrict__ b_q_weight,
const uint32_t* __restrict__ b_q_scale,
const half* __restrict__ b_q_scale_max,
half* __restrict__ c,
const int size_m,
const int size_n,
const int size_k,
const int groups,
const int groupsize,
const uint16_t* __restrict__ b_q_perm,
const int rows_8,
const int rows_6,
const int rows_5,
const int rows_4,
const int rows_3,
const int rows_2,
const bool clear
)
{
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q4_row b_q_scale_(b_q_scale, groups, size_n);
int t = threadIdx.x;
// Block
int offset_n = blockIdx.x * BLOCK_KN_SIZE * 4;
int offset_m = blockIdx.y * m_count;
int offset_k = blockIdx.z * BLOCK_KN_SIZE;
int end_n = min(offset_n + BLOCK_KN_SIZE * 4, size_n);
int end_m = min(offset_m + m_count, size_m);
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
int n = offset_n + t * 4;
// Preload block_a
__shared__ half block_a[m_count][BLOCK_KN_SIZE];
if (offset_k + t < end_k)
{
for (int m = 0; m < m_count; ++m)
{
const half* a_ptr = a_.item_ptr(offset_m + m, 0);
half* block_a_ptr = block_a[m];
half a0 = a_ptr[b_q_perm[offset_k + t]];
block_a_ptr[t] = a0;
}
}
// Clear
if (n >= size_n) return;
if (clear && blockIdx.z == 0) // && (threadIdx.x & 1) == 0)
{
for (int m = 0; m < m_count; m++)
*((uint64_t*) c_.item_ptr(offset_m + m, n)) = 0;
}
__syncthreads();
// Find initial group
int group = offset_k / groupsize;
// Preload scales
float scales[MAX_GROUPS_IN_BLOCK][4];
int groups_in_block = DIVIDE((end_k - offset_k), groupsize);
for (int g = 0; g < groups_in_block; g++)
{
int qscales[4];
b_q_scale_.item4(qscales, group + g, n);
qscales[0]++;
qscales[1]++;
qscales[2]++;
qscales[3]++;
float maxscale = __half2float(b_q_scale_max[group + g]);
scales[g][0] = __int2float_rn(qscales[0] * qscales[0]) * maxscale;
scales[g][1] = __int2float_rn(qscales[1] * qscales[1]) * maxscale;
scales[g][2] = __int2float_rn(qscales[2] * qscales[2]) * maxscale;
scales[g][3] = __int2float_rn(qscales[3] * qscales[3]) * maxscale;
}
// a, b offset
int pre_rows_8 = min(rows_8, offset_k);
int pre_rows_6 = offset_k > rows_8 ? min(rows_6, offset_k) - rows_8 : 0;
int pre_rows_5 = offset_k > rows_6 ? min(rows_5, offset_k) - rows_6 : 0;
int pre_rows_4 = offset_k > rows_5 ? min(rows_4, offset_k) - rows_5 : 0;
int pre_rows_3 = offset_k > rows_4 ? min(rows_3, offset_k) - rows_4 : 0;
int pre_rows_2 = offset_k > rows_3 ? min(rows_2, offset_k) - rows_3 : 0;
int qk = 0;
qk += pre_rows_8 / 32 * 8;
qk += pre_rows_6 / 32 * 6;
qk += pre_rows_5 / 32 * 5;
qk += pre_rows_4 / 32 * 4;
qk += pre_rows_3 / 32 * 3;
qk += pre_rows_2 / 32 * 2;
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
const half* a_ptr = &block_a[0][0];
int a_stride = BLOCK_KN_SIZE;
// Initial group
int scales_idx = 0;
float qs_f0 = scales[scales_idx][0];
float qs_f1 = scales[scales_idx][1];
float qs_f2 = scales[scales_idx][2];
float qs_f3 = scales[scales_idx][3];
int nextgroup = offset_k + groupsize;
// Column result
float block_c[m_count][4] = {};
// Dequantize groups
int k = offset_k;
while (k < rows_8 && k < end_k)
{
if (k == nextgroup)
{
group++;
scales_idx++;
qs_f0 = scales[scales_idx][0];
qs_f1 = scales[scales_idx][1];
qs_f2 = scales[scales_idx][2];
qs_f3 = scales[scales_idx][3];
nextgroup += groupsize;
}
#pragma unroll
for (int j = 0; j < 4; j++)
{
int4 load_int4[2];
load_int4[0] = *((int4*) b_ptr); b_ptr += size_n;
load_int4[1] = *((int4*) b_ptr); b_ptr += size_n;
half2 dq[4][4];
dequant_8bit_8(load_int4[0].x, load_int4[1].x, dq[0], size_n);
dequant_8bit_8(load_int4[0].y, load_int4[1].y, dq[1], size_n);
dequant_8bit_8(load_int4[0].z, load_int4[1].z, dq[2], size_n);
dequant_8bit_8(load_int4[0].w, load_int4[1].w, dq[3], size_n);
for (int m = 0; m < m_count; m++)
{
block_c[m][0] = dot22_8_f(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_f0);
block_c[m][1] = dot22_8_f(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_f1);
block_c[m][2] = dot22_8_f(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_f2);
block_c[m][3] = dot22_8_f(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_f3);
}
a_ptr += 8;
}
k += 32;
}
while (k < rows_6 && k < end_k)
{
if (k == nextgroup)
{
group++;
scales_idx++;
qs_f0 = scales[scales_idx][0];
qs_f1 = scales[scales_idx][1];
qs_f2 = scales[scales_idx][2];
qs_f3 = scales[scales_idx][3];
nextgroup += groupsize;
}
#pragma unroll
for (int j = 0; j < 2; j++)
{
int4 load_int4[3];
load_int4[0] = *((int4*) b_ptr); b_ptr += size_n;
load_int4[1] = *((int4*) b_ptr); b_ptr += size_n;
load_int4[2] = *((int4*) b_ptr); b_ptr += size_n;
half2 dq[4][8];
dequant_6bit_16(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0], size_n);
dequant_6bit_16(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1], size_n);
dequant_6bit_16(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2], size_n);
dequant_6bit_16(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3], size_n);
for (int m = 0; m < m_count; m++)
{
block_c[m][0] = dot22_16_f(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_f0);
block_c[m][1] = dot22_16_f(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_f1);
block_c[m][2] = dot22_16_f(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_f2);
block_c[m][3] = dot22_16_f(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_f3);
}
a_ptr += 16;
}
k += 32;
}
while (k < rows_5 && k < end_k)
{
if (k == nextgroup)
{
group++;
scales_idx++;
qs_f0 = scales[scales_idx][0];
qs_f1 = scales[scales_idx][1];
qs_f2 = scales[scales_idx][2];
qs_f3 = scales[scales_idx][3];
nextgroup += groupsize;
}
#pragma unroll
for (int j = 0; j < 1; j++)
{
int4 load_int4[5];
load_int4[0] = *((int4*) b_ptr); b_ptr += size_n;
load_int4[1] = *((int4*) b_ptr); b_ptr += size_n;
load_int4[2] = *((int4*) b_ptr); b_ptr += size_n;
load_int4[3] = *((int4*) b_ptr); b_ptr += size_n;
load_int4[4] = *((int4*) b_ptr); b_ptr += size_n;
half2 dq[4][16];
dequant_5bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, load_int4[3].x, load_int4[4].x, dq[0], size_n);
dequant_5bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, load_int4[3].y, load_int4[4].y, dq[1], size_n);
dequant_5bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, load_int4[3].z, load_int4[4].z, dq[2], size_n);
dequant_5bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, load_int4[3].w, load_int4[4].w, dq[3], size_n);
for (int m = 0; m < m_count; m++)
{
block_c[m][0] = dot22_32_f(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_f0);
block_c[m][1] = dot22_32_f(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_f1);
block_c[m][2] = dot22_32_f(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_f2);
block_c[m][3] = dot22_32_f(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_f3);
}
a_ptr += 32;
}
k += 32;
}
while (k < rows_4 && k < end_k)
{
if (k == nextgroup)
{
group++;
scales_idx++;
qs_f0 = scales[scales_idx][0];
qs_f1 = scales[scales_idx][1];
qs_f2 = scales[scales_idx][2];
qs_f3 = scales[scales_idx][3];
nextgroup += groupsize;
}
#pragma unroll
for (int j = 0; j < 4; j++)
{
int4 load_int4[1];
load_int4[0] = *((int4*) b_ptr); b_ptr += size_n;
half2 dq[4][4];
dequant_4bit_8(load_int4[0].x, dq[0], size_n);
dequant_4bit_8(load_int4[0].y, dq[1], size_n);
dequant_4bit_8(load_int4[0].z, dq[2], size_n);
dequant_4bit_8(load_int4[0].w, dq[3], size_n);
for (int m = 0; m < m_count; m++)
{
block_c[m][0] = dot22_8_f(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_f0);
block_c[m][1] = dot22_8_f(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_f1);
block_c[m][2] = dot22_8_f(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_f2);
block_c[m][3] = dot22_8_f(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_f3);
}
a_ptr += 8;
}
k += 32;
}
while (k < rows_3 && k < end_k)
{
if (k == nextgroup)
{
group++;
scales_idx++;
qs_f0 = scales[scales_idx][0];
qs_f1 = scales[scales_idx][1];
qs_f2 = scales[scales_idx][2];
qs_f3 = scales[scales_idx][3];
nextgroup += groupsize;
}
#pragma unroll
for (int j = 0; j < 1; j++)
{
int4 load_int4[3];
load_int4[0] = *((int4*) b_ptr); b_ptr += size_n;
load_int4[1] = *((int4*) b_ptr); b_ptr += size_n;
load_int4[2] = *((int4*) b_ptr); b_ptr += size_n;
half2 dq[4][16];
dequant_3bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0], size_n);
dequant_3bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1], size_n);
dequant_3bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2], size_n);
dequant_3bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3], size_n);
for (int m = 0; m < m_count; m++)
{
block_c[m][0] = dot22_32_f(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_f0);
block_c[m][1] = dot22_32_f(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_f1);
block_c[m][2] = dot22_32_f(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_f2);
block_c[m][3] = dot22_32_f(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_f3);
}
a_ptr += 32;
}
k += 32;
}
while (k < rows_2 && k < end_k)
{
if (k == nextgroup)
{
group++;
scales_idx++;
qs_f0 = scales[scales_idx][0];
qs_f1 = scales[scales_idx][1];
qs_f2 = scales[scales_idx][2];
qs_f3 = scales[scales_idx][3];
nextgroup += groupsize;
}
#pragma unroll
for (int j = 0; j < 2; j++)
{
int4 load_int4[1];
load_int4[0] = *((int4*) b_ptr); b_ptr += size_n;
half2 dq[4][8];
dequant_2bit_16(load_int4[0].x, dq[0], size_n);
dequant_2bit_16(load_int4[0].y, dq[1], size_n);
dequant_2bit_16(load_int4[0].z, dq[2], size_n);
dequant_2bit_16(load_int4[0].w, dq[3], size_n);
for (int m = 0; m < m_count; m++)
{
block_c[m][0] = dot22_16_f(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_f0);
block_c[m][1] = dot22_16_f(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_f1);
block_c[m][2] = dot22_16_f(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_f2);
block_c[m][3] = dot22_16_f(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_f3);
}
a_ptr += 16;
}
k += 32;
}
// Accumulate column sums in c
for (int m = 0; m < m_count; m++)
{
half2* out = (half2*)c_.item_ptr(offset_m + m, n);
half2 result01 = __halves2half2(__float2half_rn(block_c[m][0]), __float2half_rn(block_c[m][1]));
half2 result23 = __halves2half2(__float2half_rn(block_c[m][2]), __float2half_rn(block_c[m][3]));
atomicAdd(out , result01);
atomicAdd(out + 1, result23);
}
}
fp_gemm_half_q_half_kernel pick_gemm_half_q_half_kernel(bool first_block, const int m_count)
{
#if BLOCK_M_SIZE_MAX >= 1
if (m_count == 1) return gemm_half_q_half_kernel<true, 1>;
#endif
#if BLOCK_M_SIZE_MAX >= 2
if (m_count == 2) return gemm_half_q_half_kernel<true, 2>;
#endif
#if BLOCK_M_SIZE_MAX >= 3
if (m_count == 3) return gemm_half_q_half_kernel<true, 3>;
#endif
#if BLOCK_M_SIZE_MAX >= 4
if (m_count == 4) return gemm_half_q_half_kernel<true, 4>;
#endif
#if BLOCK_M_SIZE_MAX >= 5
if (m_count == 5) return gemm_half_q_half_kernel<true, 5>;
#endif
#if BLOCK_M_SIZE_MAX >= 6
if (m_count == 6) return gemm_half_q_half_kernel<true, 6>;
#endif
#if BLOCK_M_SIZE_MAX >= 7
if (m_count == 7) return gemm_half_q_half_kernel<true, 7>;
#endif
#if BLOCK_M_SIZE_MAX >= 8
if (m_count == 8) return gemm_half_q_half_kernel<true, 8>;
#endif
return NULL;
}

View file

@ -1,219 +0,0 @@
#include "compat.cuh"
__forceinline__ __device__ half2 dot22_8(half2(&dq)[4], const half* a_ptr, const half2 g_result)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __hadd2(result, g_result);
}
__forceinline__ __device__ float dot22_8_f(half2(&dq)[4], const half* a_ptr)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __half2float(__low2half(result)) + __half2float(__high2half(result));
}
typedef void (*fp_gemm_half_q_half_gptq_kernel)
(
const half*,
const uint32_t*,
const uint32_t*,
const half*,
half*,
const int,
const int,
const int,
const int,
const int,
const uint16_t*,
const int,
const bool
);
template <bool first_block, int m_count>
__global__ void gemm_half_q_half_gptq_kernel
(
const half* __restrict__ a,
const uint32_t* __restrict__ b_q_weight,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales,
half* __restrict__ c,
const int size_m,
const int size_n,
const int size_k,
const int groups,
const int groupsize,
const uint16_t* __restrict__ b_q_perm,
const int rows_4,
const bool clear
)
{
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int t = threadIdx.x;
// Block
int offset_n = blockIdx.x * BLOCK_KN_SIZE * 4;
int offset_m = blockIdx.y * m_count;
int offset_k = blockIdx.z * BLOCK_KN_SIZE;
int end_n = min(offset_n + BLOCK_KN_SIZE * 4, size_n);
int end_m = min(offset_m + m_count, size_m);
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
int n = offset_n + t * 4;
// Preload block_a
__shared__ half block_a[m_count][BLOCK_KN_SIZE];
if (offset_k + t < end_k)
{
for (int m = 0; m < m_count; ++m)
{
const half* a_ptr = a_.item_ptr(offset_m + m, 0);
half* block_a_ptr = block_a[m];
half a0;
if (b_q_perm) a0 = a_ptr[b_q_perm[offset_k + t]];
else a0 = a_ptr[offset_k + t];
block_a_ptr[t] = a0;
}
}
// Zero output
if (n >= size_n) return;
if (clear && blockIdx.z == 0) // && (threadIdx.x & 1) == 0)
{
for (int m = 0; m < m_count; m++)
*((uint64_t*)c_.item_ptr(offset_m + m, n)) = 0;
}
__syncthreads();
// Find initial group
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// a, b offset
int qk = offset_k / (32 / 4);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
const half* a_ptr = &block_a[0][0];
int a_stride = BLOCK_KN_SIZE;
// Initial group
int zeros[4];
float scales[4];
half2 z1z16[4][2];
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
// __syncthreads();
// Column result
float block_c[m_count][4] = {};
// Dequantize and multiply
int k = offset_k;
while (k < end_k)
{
if (k == nextgroup)
{
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
}
#pragma unroll
for (int j = 0; j < 4; j++)
{
const int4* b_ptr4 = (int4*) b_ptr;
int4 load_int4 = *b_ptr4;
half2 dq[4][4];
dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n, false);
dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n, false);
dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n, false);
dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n, false);
#pragma unroll
for (int m = 0; m < m_count; m++)
{
block_c[m][0] = fma(dot22_8_f(dq[0], a_ptr + m * a_stride), scales[0], block_c[m][0]);
block_c[m][1] = fma(dot22_8_f(dq[1], a_ptr + m * a_stride), scales[1], block_c[m][1]);
block_c[m][2] = fma(dot22_8_f(dq[2], a_ptr + m * a_stride), scales[2], block_c[m][2]);
block_c[m][3] = fma(dot22_8_f(dq[3], a_ptr + m * a_stride), scales[3], block_c[m][3]);
}
b_ptr += size_n;
a_ptr += 8;
}
k += 32;
}
for (int m = 0; m < m_count; m++)
{
half2 *out = (half2*) c_.item_ptr(offset_m + m, n);
half2 result01 = __halves2half2(__float2half_rn(block_c[m][0]), __float2half_rn(block_c[m][1]));
half2 result23 = __halves2half2(__float2half_rn(block_c[m][2]), __float2half_rn(block_c[m][3]));
atomicAdd(out , result01);
atomicAdd(out + 1, result23);
}
}
fp_gemm_half_q_half_gptq_kernel pick_gemm_half_q_half_gptq_kernel(bool first_block, const int m_count)
{
#if BLOCK_M_SIZE_MAX >= 1
if (m_count == 1) return gemm_half_q_half_gptq_kernel<true, 1>;
#endif
#if BLOCK_M_SIZE_MAX >= 2
if (m_count == 2) return gemm_half_q_half_gptq_kernel<true, 2>;
#endif
#if BLOCK_M_SIZE_MAX >= 3
if (m_count == 3) return gemm_half_q_half_gptq_kernel<true, 3>;
#endif
#if BLOCK_M_SIZE_MAX >= 4
if (m_count == 4) return gemm_half_q_half_gptq_kernel<true, 4>;
#endif
#if BLOCK_M_SIZE_MAX >= 5
if (m_count == 5) return gemm_half_q_half_gptq_kernel<true, 5>;
#endif
#if BLOCK_M_SIZE_MAX >= 6
if (m_count == 6) return gemm_half_q_half_gptq_kernel<true, 6>;
#endif
#if BLOCK_M_SIZE_MAX >= 7
if (m_count == 7) return gemm_half_q_half_gptq_kernel<true, 7>;
#endif
#if BLOCK_M_SIZE_MAX >= 8
if (m_count == 8) return gemm_half_q_half_gptq_kernel<true, 8>;
#endif
return NULL;
}

View file

@ -1,603 +0,0 @@
#include "q_matrix.cuh"
#include "matrix_view.cuh"
#include "util.cuh"
#include "quant/qdq_2.cuh"
#include "quant/qdq_3.cuh"
#include "quant/qdq_4.cuh"
#include "quant/qdq_5.cuh"
#include "quant/qdq_6.cuh"
#include "quant/qdq_8.cuh"
#define BLOCK_KN_SIZE 128
#define THREADS_X 32
#define THREADS_Y 32
// Shuffle quantized data on load
__global__ void shuffle_kernel
(
uint32_t* __restrict__ b_q_weight,
const int size_k,
const int size_n,
const int rows_8,
const int rows_6,
const int rows_5,
const int rows_4,
const int rows_3,
const int rows_2
)
{
int n = blockIdx.x * THREADS_X + threadIdx.x;
if (n >= size_n) return;
int k = 0;
uint32_t* b_ptr = b_q_weight + n;
while (k < rows_8) { shuffle_8bit_4 (b_ptr, size_n); b_ptr += 1 * size_n; k += 4; }
while (k < rows_6) { shuffle_6bit_16(b_ptr, size_n); b_ptr += 3 * size_n; k += 16; }
while (k < rows_5) { shuffle_5bit_32(b_ptr, size_n); b_ptr += 5 * size_n; k += 32; }
while (k < rows_4) { shuffle_4bit_8 (b_ptr, size_n); b_ptr += 1 * size_n; k += 8; }
while (k < rows_3) { shuffle_3bit_32(b_ptr, size_n); b_ptr += 3 * size_n; k += 32; }
while (k < rows_2) { shuffle_2bit_16(b_ptr, size_n); b_ptr += 1 * size_n; k += 16; }
}
// QMatrix constructor
QMatrix::QMatrix
(
const int _device,
const int _height,
const int _width,
const int _groups,
uint32_t* _q_weight,
uint16_t* _q_perm,
uint16_t* _q_invperm,
uint32_t* _q_scale,
half* _q_scale_max,
uint16_t* _q_groups,
uint32_t* _gptq_qzeros,
half* _gptq_scales,
uint32_t* _gptq_g_idx,
half* _temp_dq
) :
device(_device),
height(_height),
width(_width),
groups(_groups),
temp_dq(_temp_dq)
{
cudaSetDevice(device);
cuda_q_weight = _q_weight;
cuda_q_perm = _q_perm;
cuda_q_invperm = _q_invperm;
cuda_q_scale = _q_scale;
cuda_q_scale_max = _q_scale_max;
cuda_q_groups = _q_groups;
cuda_gptq_qzeros = _gptq_qzeros;
cuda_gptq_scales = _gptq_scales;
is_gptq = (_gptq_qzeros != NULL);
groupsize = 1;
while (groupsize * groups < height) groupsize *= 2;
// Create group map
rows_8 = 0;
rows_6 = 0;
rows_5 = 0;
rows_4 = 0;
rows_3 = 0;
rows_2 = 0;
if (!is_gptq)
{
uint16_t* cpu_q_groups = (uint16_t*)calloc(groups * 2, sizeof(uint16_t));
cudaMemcpy(cpu_q_groups, cuda_q_groups, groups * 2 * sizeof(uint16_t), cudaMemcpyDeviceToHost);
for (int i = 0; i < groups; i++)
{
int bits = cpu_q_groups[i * 2];
if (bits == 8) rows_8 += groupsize;
if (bits == 6) rows_6 += groupsize;
if (bits == 5) rows_5 += groupsize;
if (bits == 4) rows_4 += groupsize;
if (bits == 3) rows_3 += groupsize;
if (bits == 2) rows_2 += groupsize;
}
free(cpu_q_groups);
rows_6 += rows_8;
rows_5 += rows_6;
rows_4 += rows_5;
rows_3 += rows_4;
rows_2 += rows_3;
}
else
{
rows_4 = height;
rows_3 = height;
rows_2 = height;
if (_gptq_g_idx) make_sequential(_gptq_g_idx);
}
// Shuffle quantized data
dim3 blockDim, gridDim;
blockDim.x = THREADS_X;
blockDim.y = 1;
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = 1;
shuffle_kernel<<<gridDim, blockDim>>>(cuda_q_weight, height, width, rows_8, rows_6, rows_5, rows_4, rows_3, rows_2);
}
// Reconstruct b[k,n] (GPTQ)
__global__ void reconstruct_gptq_kernel
(
const uint32_t* __restrict__ b_q_weight,
const uint16_t* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales,
//const uint16_t* __restrict__ b_q_groups,
const int size_k,
const int size_n,
const int groupsize,
const int groups,
half* __restrict__ b,
const int rows_4
)
{
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int offset_k = BLOCK_KN_SIZE * blockIdx.y;
int offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
// Preload remapping table
__shared__ uint16_t perm[BLOCK_KN_SIZE];
int t = threadIdx.x;
if (b_q_perm)
{
if (offset_k + t < size_k)
perm[t] = b_q_perm[offset_k + t];
}
// Column
int n = offset_n + t * 4;
if (n >= size_n) return;
// Find initial group
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// b offset
int qk = offset_k / (32 / 4);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
// Initial zeros/scale
int zeros[4];
half2 scales[4];
half2 z1z16[4][2];
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
__syncthreads();
int k = offset_k;
int lk = 0;
while (k < end_k)
{
if (k == nextgroup)
{
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
}
for (int p = 0; p < 4; p++)
{
half2 dq[4][4];
const int4* b_ptr4 = (int4*) b_ptr;
int4 load_int4 = *b_ptr4;
dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n, false);
dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n, false);
dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n, false);
dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n, false);
b_ptr += size_n;
//half* dqh = (half*)dq;
if (b_q_perm)
{
for (int j = 0; j < 4; j++)
{
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(perm[lk++], n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(perm[lk++], n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j]));
}
}
else
{
for (int j = 0; j < 4; j++)
{
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(offset_k + lk++, n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(offset_k + lk++, n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j]));
}
}
}
k += 32;
}
}
// Reconstruct b[k,n]
__global__ void reconstruct_kernel
(
const uint32_t* __restrict__ b_q_weight,
const uint16_t* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_q_scale,
const half* __restrict__ b_q_scale_max,
//const uint16_t* __restrict__ b_q_groups,
const int size_k,
const int size_n,
const int groupsize,
const int groups,
half* __restrict__ b,
const int rows_8,
const int rows_6,
const int rows_5,
const int rows_4,
const int rows_3,
const int rows_2
)
{
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q4_row b_q_scale_(b_q_scale, groups, size_n);
int offset_k = BLOCK_KN_SIZE * blockIdx.y;
int offset_n = BLOCK_KN_SIZE * blockIdx.x;
// Preload remapping table
int t = threadIdx.x;
__shared__ uint16_t perm[BLOCK_KN_SIZE];
if (offset_k + t < size_k)
perm[t] = b_q_perm[offset_k + t];
// Column
int n = offset_n + t;
if (n >= size_n) return;
// Find initial group
int group = offset_k / groupsize;
int pre_rows_8 = min(rows_8, offset_k);
int pre_rows_6 = offset_k > rows_8 ? min(rows_6, offset_k) - rows_8 : 0;
int pre_rows_5 = offset_k > rows_6 ? min(rows_5, offset_k) - rows_6 : 0;
int pre_rows_4 = offset_k > rows_5 ? min(rows_4, offset_k) - rows_5 : 0;
int pre_rows_3 = offset_k > rows_4 ? min(rows_3, offset_k) - rows_4 : 0;
int pre_rows_2 = offset_k > rows_3 ? min(rows_2, offset_k) - rows_3 : 0;
int qk = 0;
qk += pre_rows_8 / 32 * 8;
qk += pre_rows_6 / 32 * 6;
qk += pre_rows_5 / 32 * 5;
qk += pre_rows_4 / 32 * 4;
qk += pre_rows_3 / 32 * 3;
qk += pre_rows_2 / 32 * 2;
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
half qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]);
half2 qs_h2 = __halves2half2(qs_h, qs_h);
int nextgroup = offset_k + groupsize;
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
int k = offset_k;
int lk = 0;
__syncthreads();
while (k < rows_8 && k < end_k)
{
if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += groupsize; qs_h2 = __halves2half2(qs_h, qs_h); }
for (int p = 0; p < 4; p++)
{
half2 dq[4];
uint32_t q_0 = *b_ptr; b_ptr += size_n;
uint32_t q_1 = *b_ptr; b_ptr += size_n;
dequant_8bit_8(q_0, q_1, dq, size_n);
for (int j = 0; j < 4; j++) dq[j] = __hmul2(dq[j], qs_h2);
half* dqh = (half*) dq;
for (int j = 0; j < 8; j++) b_.set(perm[lk++], n, dqh[j]);
}
k += 32;
}
while (k < rows_6 && k < end_k)
{
if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += groupsize; qs_h2 = __halves2half2(qs_h, qs_h); }
for (int p = 0; p < 2; p++)
{
half2 dq[8];
uint32_t q_0 = *b_ptr; b_ptr += size_n;
uint32_t q_1 = *b_ptr; b_ptr += size_n;
uint32_t q_2 = *b_ptr; b_ptr += size_n;
dequant_6bit_16(q_0, q_1, q_2, dq, size_n);
for (int j = 0; j < 8; j++) dq[j] = __hmul2(dq[j], qs_h2);
half* dqh = (half*) dq;
for (int j = 0; j < 16; j++) b_.set(perm[lk++], n, dqh[j]);
}
k += 32;
}
while (k < rows_5 && k < end_k)
{
if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += groupsize; qs_h2 = __halves2half2(qs_h, qs_h); }
for (int p = 0; p < 1; p++)
{
half2 dq[16];
uint32_t q_0 = *b_ptr; b_ptr += size_n;
uint32_t q_1 = *b_ptr; b_ptr += size_n;
uint32_t q_2 = *b_ptr; b_ptr += size_n;
uint32_t q_3 = *b_ptr; b_ptr += size_n;
uint32_t q_4 = *b_ptr; b_ptr += size_n;
dequant_5bit_32(q_0, q_1, q_2, q_3, q_4, dq, size_n);
for (int j = 0; j < 16; j++) dq[j] = __hmul2(dq[j], qs_h2);
half* dqh = (half*) dq;
for (int j = 0; j < 32; j++) b_.set(perm[lk++], n, dqh[j]);
}
k += 32;
}
while (k < rows_4 && k < end_k)
{
if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += groupsize; qs_h2 = __halves2half2(qs_h, qs_h); }
for (int p = 0; p < 4; p++)
{
half2 dq[4];
uint32_t q_0 = *b_ptr; b_ptr += size_n;
dequant_4bit_8(q_0, dq, size_n);
for (int j = 0; j < 4; j++) dq[j] = __hmul2(dq[j], qs_h2);
half* dqh = (half*) dq;
for (int j = 0; j < 8; j++) b_.set(perm[lk++], n, dqh[j]);
}
k += 32;
}
while (k < rows_3 && k < end_k)
{
if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += groupsize; qs_h2 = __halves2half2(qs_h, qs_h); }
for (int p = 0; p < 1; p++)
{
half2 dq[16];
uint32_t q_0 = *b_ptr; b_ptr += size_n;
uint32_t q_1 = *b_ptr; b_ptr += size_n;
uint32_t q_2 = *b_ptr; b_ptr += size_n;
dequant_3bit_32(q_0, q_1, q_2, dq, size_n);
for (int j = 0; j < 16; j++) dq[j] = __hmul2(dq[j], qs_h2);
half* dqh = (half*) dq;
for (int j = 0; j < 32; j++) b_.set(perm[lk++], n, dqh[j]);
}
k += 32;
}
while (k < rows_2 && k < end_k)
{
if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += groupsize; qs_h2 = __halves2half2(qs_h, qs_h); }
for (int p = 0; p < 2; p++)
{
half2 dq[8];
uint32_t q_0 = *b_ptr; b_ptr += size_n;
dequant_2bit_16(q_0, dq, size_n);
for (int j = 0; j < 8; j++) dq[j] = __hmul2(dq[j], qs_h2);
half* dqh = (half*) dq;
for (int j = 0; j < 16; j++) b_.set(perm[lk++], n, dqh[j]);
}
k += 32;
}
}
void QMatrix::reconstruct(half* out)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);
gridDim.y = DIVIDE(height, BLOCK_KN_SIZE);
if (!is_gptq)
{
reconstruct_kernel<<<gridDim, blockDim>>>
(
cuda_q_weight,
cuda_q_perm,
cuda_q_scale,
cuda_q_scale_max,
//cuda_q_groups,
height,
width,
groupsize,
groups,
out,
rows_8,
rows_6,
rows_5,
rows_4,
rows_3,
rows_2
);
}
else
{
reconstruct_gptq_kernel<<<gridDim, blockDim>>>
(
cuda_q_weight,
cuda_q_perm,
cuda_gptq_qzeros,
cuda_gptq_scales,
//const uint16_t* __restrict__ b_q_groups,
height,
width,
groupsize,
groups,
out,
rows_4
);
}
}
__global__ void make_sequential_kernel
(
const uint32_t* __restrict__ w,
uint32_t* __restrict__ w_new,
const uint16_t* __restrict__ q_perm,
const int w_height,
const int w_width
)
{
const uint64_t* w2 = (uint64_t*) w;
uint64_t* w_new2 = (uint64_t*) w_new;
int w2_stride = w_width >> 1;
int w2_column = THREADS_X * blockIdx.x + threadIdx.x;
if (w2_column >= w2_stride) return;
int w_new2_row = blockIdx.y;
int q_perm_idx = w_new2_row << 3;
uint64_t dst = 0;
#pragma unroll
for (int i = 0; i < 8; i++)
{
int source_row = q_perm[q_perm_idx++];
int w2_row = source_row >> 3;
int w2_subrow = source_row & 0x07;
int w2_row_shift = w2_subrow << 2;
int wnew2_row_shift = i << 2;
uint64_t src = w2[w2_row * w2_stride + w2_column];
src >>= w2_row_shift;
src &= 0x0000000f0000000f;
src <<= wnew2_row_shift;
dst |= src;
}
w_new2[w_new2_row * w2_stride + w2_column] = dst;
}
void QMatrix::make_sequential(const uint32_t* cpu_g_idx)
{
uint32_t* cuda_new_qweight = NULL;
cudaMalloc(&cuda_new_qweight, height / 8 * width * sizeof(uint32_t));
uint32_t* cpu_g_idx_map = (uint32_t*) calloc(groups, sizeof(uint32_t));
uint32_t* cpu_x_map = (uint32_t*) malloc(height * sizeof(uint32_t));
uint32_t* cpu_x_map_inv = (uint32_t*) malloc(height * sizeof(uint32_t));
// Group histogram
for (int i = 0; i < height; i++) cpu_g_idx_map[cpu_g_idx[i]]++;
// Group map
for (int i = 0, acc = 0; i < groups; i++)
{
short tmp = cpu_g_idx_map[i];
cpu_g_idx_map[i] = acc;
acc += tmp;
}
// X map (inverse)
for (int row = 0; row < height; row++)
{
uint32_t target_group = cpu_g_idx[row];
uint32_t target_row = cpu_g_idx_map[target_group];
cpu_g_idx_map[target_group]++;
cpu_x_map_inv[row] = target_row;
}
// X map
for (int row = 0; row < height; row++) cpu_x_map[cpu_x_map_inv[row]] = row;
// Reduce to uint16_t
uint16_t* cpu_x_map16 = (uint16_t*)cpu_x_map;
uint16_t* cpu_x_map_inv16 = (uint16_t*)cpu_x_map_inv;
for (int row = 0; row < height; row++) cpu_x_map16[row] = (uint16_t) cpu_x_map[row];
for (int row = 0; row < height; row++) cpu_x_map_inv16[row] = (uint16_t) cpu_x_map_inv[row];
// Move to CUDA
cudaMemcpyAsync(cuda_q_perm, cpu_x_map16, height * sizeof(uint16_t), cudaMemcpyHostToDevice);
cudaMemcpyAsync(cuda_q_invperm, cpu_x_map_inv16, height * sizeof(uint16_t), cudaMemcpyHostToDevice);
// Rearrange rows in w
dim3 blockDim, gridDim;
blockDim.x = THREADS_X;
blockDim.y = 1;
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = height / 8;
make_sequential_kernel<<<gridDim, blockDim>>>
(
cuda_q_weight,
cuda_new_qweight,
cuda_q_perm,
height / 8,
width
);
// Replace qweights
cudaMemcpyAsync(cuda_q_weight, cuda_new_qweight, height / 8 * width * sizeof(uint32_t), cudaMemcpyDeviceToDevice);
// Cleanup
cudaDeviceSynchronize();
cudaFree(cuda_new_qweight);
free(cpu_g_idx_map);
free(cpu_x_map);
free(cpu_x_map_inv);
}

View file

@ -1,71 +0,0 @@
#ifndef _q_matrix_cuh
#define _q_matrix_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#define MAX_SUPERGROUPS 16
class QMatrix
{
public:
int device;
bool is_gptq;
int height;
int width;
int groups;
int groupsize;
int rows_8;
int rows_6;
int rows_5;
int rows_4;
int rows_3;
int rows_2;
uint32_t* cuda_q_weight = NULL;
uint16_t* cuda_q_perm = NULL;
uint16_t* cuda_q_invperm = NULL;
uint32_t* cuda_q_scale = NULL;
half* cuda_q_scale_max = NULL;
uint16_t* cuda_q_groups = NULL;
uint32_t* cuda_gptq_qzeros = NULL;
half* cuda_gptq_scales = NULL;
half* temp_dq;
QMatrix
(
const int _device,
const int _height,
const int _width,
const int _groups,
uint32_t* _q_weight,
uint16_t* _q_perm,
uint16_t* _q_invperm,
uint32_t* _q_scale,
half* _q_scale_max,
uint16_t* _q_groups,
uint32_t* _gptq_qzeros,
half* _gptq_scales,
uint32_t* _gptq_g_idx,
half* _temp_dq
);
~QMatrix();
void reconstruct(half* out);
void make_sequential(const uint32_t* cpu_g_idx);
private:
};
#endif

View file

@ -1,103 +0,0 @@
#ifndef _qdq_2_cuh
#define _qdq_2_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_2BIT == 1
// Permutation:
//
// ffddbb99 77553311 eeccaa88 66442200
__forceinline__ __device__ void shuffle_2bit_16
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0];
uint32_t qb = 0;
#pragma unroll
for (int i = 0; i < 8; i++)
{
uint32_t qa0 = qa & 0x03;
uint32_t qa1 = (qa & 0x0c) >> 2;
qa >>= 4;
qb |= (qa1 << (i * 2 + 16));
qb |= (qa0 << (i * 2));
}
q[0] = qb;
}
__forceinline__ __device__ void dequant_2bit_16
(
const uint32_t q_0,
half2 (&dq)[8],
int stride
)
{
const uint32_t c0 = 0x64006400;
const half y4_ = __float2half_rn(1.0f / 4.0f);
const half y16_ = __float2half_rn(1.0f / 16.0f);
const half y64_ = __float2half_rn(1.0f / 64.0f);
const half2 y4 = __halves2half2(y4_, y4_);
const half2 y16 = __halves2half2(y16_, y16_);
const half2 y64 = __halves2half2(y64_, y64_);
const half z1_ = __float2half_rn(-1024.0f - 2.0f);
const half z4_ = __float2half_rn(-1024.0f / 4.0f - 2.0f);
const half z16_ = __float2half_rn(-1024.0f / 16.0f - 2.0f);
const half z64_ = __float2half_rn(-1024.0f / 64.0f - 2.0f);
const half2 z1 = __halves2half2(z1_, z1_);
const half2 z4 = __halves2half2(z4_, z4_);
const half2 z16 = __halves2half2(z16_, z16_);
const half2 z64 = __halves2half2(z64_, z64_);
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x00030003) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x000c000c) | c0); // half2(q[ 2], q[ 3]) * 4 + 1024
half2_uint32 q2((qa & 0x00300030) | c0); // half2(q[ 4], q[ 5]) * 16 + 1024
half2_uint32 q3((qa & 0x00c000c0) | c0); // half2(q[ 6], q[ 7]) * 64 + 1024
qa >>= 8;
half2_uint32 q4((qa & 0x00030003) | c0); // half2(q[ 8], q[ 8]) + 1024
half2_uint32 q5((qa & 0x000c000c) | c0); // half2(q[10], q[11]) * 4 + 1024
half2_uint32 q6((qa & 0x00300030) | c0); // half2(q[12], q[13]) * 16 + 1024
half2_uint32 q7((qa & 0x00c000c0) | c0); // half2(q[14], q[15]) * 64 + 1024
dq[0] = __hadd2(q0.as_half2, z1);
dq[1] = __hfma2(q1.as_half2, y4, z4);
dq[2] = __hfma2(q2.as_half2, y16, z16);
dq[3] = __hfma2(q3.as_half2, y64, z64);
dq[4] = __hadd2(q4.as_half2, z1);
dq[5] = __hfma2(q5.as_half2, y4, z4);
dq[6] = __hfma2(q6.as_half2, y16, z16);
dq[7] = __hfma2(q7.as_half2, y64, z64);
}
#else
__forceinline__ __device__ void shuffle_2bit_16
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_2bit_16
(
const uint32_t q_0,
half2 (&dq)[8],
int stride
)
{
half dqh[16];
for (int i = 0; i < 16; i++) dqh[i] = dq_ns(exb(q_0, i * 2, 0x03), 2);
for (int i = 0; i < 8; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
#endif
#endif

View file

@ -1,169 +0,0 @@
#ifndef _qdq_3_cuh
#define _qdq_3_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_3BIT == 1
// Permutation:
//
// v9997775 55333111 u8886664 44222000 (u, v lsb)
// vjjjhhhf ffdddbbb uiiiggge eecccaaa
// vtttrrrp ppnnnlll usssqqqo oommmkkk
__forceinline__ __device__ void shuffle_3bit_32
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0 * stride];
uint32_t qb = q[1 * stride];
uint32_t qc = q[2 * stride];
// qa: aa999888 77766655 54443332 22111000
// qb: lkkkjjji iihhhggg fffeeedd dcccbbba
// qc: vvvuuutt tsssrrrq qqpppooo nnnmmmll
uint32_t qd = qc >> 26;
qc <<= 4;
qc |= qb >> 28;
qb <<= 2;
qb |= qa >> 30;
// qa: ..999888 77766655 54443332 22111000
// qb: ..jjjiii hhhgggff feeedddc ccbbbaaa
// qc: ..tttsss rrrqqqpp pooonnnm mmlllkkk
// qd: vvvuuu
uint32_t za = 0;
uint32_t zb = 0;
uint32_t zc = 0;
for (int i = 0; i < 5; i++) { uint32_t t0 = qa & 0x07; uint32_t t1 = (qa & 0x38) >> 3; qa >>= 6; za |= (t0 << (i * 3)); za |= (t1 << (i * 3 + 16)); }
for (int i = 0; i < 5; i++) { uint32_t t0 = qb & 0x07; uint32_t t1 = (qb & 0x38) >> 3; qb >>= 6; zb |= (t0 << (i * 3)); zb |= (t1 << (i * 3 + 16)); }
for (int i = 0; i < 5; i++) { uint32_t t0 = qc & 0x07; uint32_t t1 = (qc & 0x38) >> 3; qc >>= 6; zc |= (t0 << (i * 3)); zc |= (t1 << (i * 3 + 16)); }
// za: 9997775 55333111 8886664 44222000
// zb: jjjhhhf ffdddbbb iiiggge eecccaaa
// zc: tttrrrp ppnnnlll sssqqqo oommmkkk
// qd: vvvuuu
za |= ((qd & 0x01) >> 0) << 15;
zb |= ((qd & 0x02) >> 1) << 15;
zc |= ((qd & 0x04) >> 2) << 15;
za |= ((qd & 0x08) >> 3) << 31;
zb |= ((qd & 0x10) >> 4) << 31;
zc |= ((qd & 0x20) >> 5) << 31;
// za: v9997775 55333111 u8886664 44222000 (u, v lsb)
// zb: vjjjhhhf ffdddbbb uiiiggge eecccaaa
// zc: vtttrrrp ppnnnlll usssqqqo oommmkkk
q[0 * stride] = za;
q[1 * stride] = zb;
q[2 * stride] = zc;
}
__forceinline__ __device__ void dequant_3bit_32
(
const uint32_t q_0,
const uint32_t q_1,
const uint32_t q_2,
half2 (&dq)[16],
int stride
)
{
const uint32_t c0 = 0x64006400;
const half y8_ = __float2half_rn(1.0f / 8.0f);
const half y64_ = __float2half_rn(1.0f / 64.0f);
const half2 y8 = __halves2half2(y8_, y8_);
const half2 y64 = __halves2half2(y64_, y64_);
const half z1_ = __float2half_rn(-1024.0f - 4.0f);
const half z8_ = __float2half_rn(-1024.0f / 8.0f - 4.0f);
const half z64_ = __float2half_rn(-1024.0f / 64.0f - 4.0f);
const half2 z1 = __halves2half2(z1_, z1_);
const half2 z8 = __halves2half2(z8_, z8_);
const half2 z64 = __halves2half2(z64_, z64_);
uint32_t qa = q_0;
uint32_t qb = q_1;
uint32_t qc = q_2;
half2_uint32 q0((qa & 0x00070007) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x00380038) | c0); // half2(q[ 2], q[ 3]) * 8 + 1024
qa >>= 6;
half2_uint32 q2((qa & 0x00070007) | c0); // half2(q[ 4], q[ 5]) + 1024
half2_uint32 q3((qa & 0x00380038) | c0); // half2(q[ 6], q[ 7]) * 8 + 1024
half2_uint32 q4((qa & 0x01c001c0) | c0); // half2(q[ 8], q[ 9]) * 64 + 1024
qa >>= 9;
qa &= 0x00010001;
half2_uint32 q5((qb & 0x00070007) | c0); // half2(q[10], q[11]) + 1024
half2_uint32 q6((qb & 0x00380038) | c0); // half2(q[12], q[13]) * 8 + 1024
qb >>= 6;
half2_uint32 q7((qb & 0x00070007) | c0); // half2(q[14], q[15]) + 1024
half2_uint32 q8((qb & 0x00380038) | c0); // half2(q[16], q[17]) * 8 + 1024
half2_uint32 q9((qb & 0x01c001c0) | c0); // half2(q[18], q[19]) * 64 + 1024
qb >>= 8;
qb &= 0x00020002;
half2_uint32 q10((qc & 0x00070007) | c0); // half2(q[20], q[21]) + 1024
half2_uint32 q11((qc & 0x00380038) | c0); // half2(q[22], q[23]) * 8 + 1024
qc >>= 6;
half2_uint32 q12((qc & 0x00070007) | c0); // half2(q[24], q[25]) + 1024
half2_uint32 q13((qc & 0x00380038) | c0); // half2(q[26], q[27]) * 8 + 1024
half2_uint32 q14((qc & 0x01c001c0) | c0); // half2(q[28], q[29]) * 64 + 1024
qc >>= 7;
qc &= 0x00040004;
half2_uint32 q15((qa | qb | qc) | c0);
dq[ 0] = __hadd2( q0.as_half2, z1);
dq[ 1] = __hfma2( q1.as_half2, y8, z8);
dq[ 2] = __hadd2( q2.as_half2, z1);
dq[ 3] = __hfma2( q3.as_half2, y8, z8);
dq[ 4] = __hfma2( q4.as_half2, y64, z64);
dq[ 5] = __hadd2( q5.as_half2, z1);
dq[ 6] = __hfma2( q6.as_half2, y8, z8);
dq[ 7] = __hadd2( q7.as_half2, z1);
dq[ 8] = __hfma2( q8.as_half2, y8, z8);
dq[ 9] = __hfma2( q9.as_half2, y64, z64);
dq[10] = __hadd2(q10.as_half2, z1);
dq[11] = __hfma2(q11.as_half2, y8, z8);
dq[12] = __hadd2(q12.as_half2, z1);
dq[13] = __hfma2(q13.as_half2, y8, z8);
dq[14] = __hfma2(q14.as_half2, y64, z64);
dq[15] = __hadd2(q15.as_half2, z1);
}
#else
__forceinline__ __device__ void shuffle_3bit_32
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_3bit_32
(
const uint32_t q_0,
const uint32_t q_1,
const uint32_t q_2,
half2 (&dq)[16],
int stride
)
{
half dqh[32];
for (int i = 0; i < 10; i++) dqh[ i] = dq_ns(exb( q_0, i * 3 , 0x07), 4);
dqh[10 ] = dq_ns(exb(q_1, q_0, 30, 0x07), 4);
for (int i = 0; i < 10; i++) dqh[11 + i] = dq_ns(exb( q_1, i * 3 + 1, 0x07), 4);
dqh[21 ] = dq_ns(exb(q_2, q_1, 31, 0x07), 4);
for (int i = 0; i < 10; i++) dqh[22 + i] = dq_ns(exb( q_2, i * 3 + 2, 0x07), 4);
for (int i = 0; i < 16; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
#endif
#endif

View file

@ -1,227 +0,0 @@
#ifndef _qdq_4_cuh
#define _qdq_4_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_4BIT == 1
// Permutation:
//
// 77775555 33331111 66664444 22220000
__forceinline__ __device__ void shuffle_4bit_8
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0];
uint32_t qb = 0;
#pragma unroll
for (int i = 0; i < 4; i++)
{
uint32_t qa0 = qa & 0x0f;
uint32_t qa1 = (qa & 0xf0) >> 4;
qa >>= 8;
qb |= (qa1 << (i * 4 + 16));
qb |= (qa0 << (i * 4));
}
q[0] = qb;
}
__forceinline__ __device__ void dequant_4bit_8
(
const uint32_t q_0,
half2 (&dq)[4],
int stride
)
{
const uint32_t c0 = 0x64006400;
const half y16_ = __float2half_rn(1.0f / 16.0f);
const half2 y16 = __halves2half2(y16_, y16_);
const half z1_ = __float2half_rn(-1024.0f - 8.0f);
const half z16_ = __float2half_rn(-1024.0f / 16.0f - 8.0f);
const half2 z1 = __halves2half2(z1_, z1_);
const half2 z16 = __halves2half2(z16_, z16_);
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x000f000f) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x00f000f0) | c0); // half2(q[ 2], q[ 3]) * 16 + 1024
qa >>= 8;
half2_uint32 q2((qa & 0x000f000f) | c0); // half2(q[ 4], q[ 5]) + 1024
half2_uint32 q3((qa & 0x00f000f0) | c0); // half2(q[ 6], q[ 7]) * 16 + 1024
dq[0] = __hadd2(q0.as_half2, z1);
dq[1] = __hfma2(q1.as_half2, y16, z16);
dq[2] = __hadd2(q2.as_half2, z1);
dq[3] = __hfma2(q3.as_half2, y16, z16);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero_scale
(
const uint32_t zero,
const half scale,
half2 (&z1z16)[2],
half2 (&y1y16)[2]
)
{
half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero);
half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero));
half2 scale2 = __half2half2(scale);
z1z16[0] = __hmul2(scale2, __half2half2(z1.as_half));
z1z16[1] = __hmul2(scale2, __half2half2(z16));
const half y1 = __float2half_rn(1.0f);
const half y16 = __float2half_rn(1.0f / 16.0f);
y1y16[0] = __hmul2(scale2, __half2half2(y1));
y1y16[1] = __hmul2(scale2, __half2half2(y16));
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero
(
const uint32_t zero,
half2(&z1z16)[2],
half2(&y1y16)[2]
)
{
half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero);
half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero));
z1z16[0] = __half2half2(z1.as_half);
z1z16[1] = __half2half2(z16);
const half y1 = __float2half_rn(1.0f);
const half y16 = __float2half_rn(1.0f / 16.0f);
y1y16[0] = __half2half2(y1);
y1y16[1] = __half2half2(y16);
}
__forceinline__ __device__ void dequant_4bit_8_gptq
(
const uint32_t q_0,
half2 (&dq)[4],
half2 (&z1z16)[2],
half2 (&y1y16)[2],
int stride,
bool scaled
)
{
const uint32_t c0 = 0x64006400;
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x000f000f) | c0); // half2( q[0] + 1024, q[1] + 1024 )
half2_uint32 q1((qa & 0x00f000f0) | c0); // half2( q[2] * 16 + 1024, q[3] * 16 + 1024 )
qa >>= 8;
half2_uint32 q2((qa & 0x000f000f) | c0); // half2( q[4] + 1024, q[5] + 1024 )
half2_uint32 q3((qa & 0x00f000f0) | c0); // half2( q[6] * 16 + 1024, q[7] * 16 + 1024 )
if (scaled)
{
dq[0] = __hfma2(q0.as_half2, y1y16[0], z1z16[0]); // half2( q[0] * s - z * s, q[1] * s - z * s)
dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] * s - z * s, q[3] * s - z * s)
dq[2] = __hfma2(q2.as_half2, y1y16[0], z1z16[0]);
dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]);
}
else
{
dq[0] = __hadd2(q0.as_half2, z1z16[0]); // half2( q[0] - z, q[1] - z )
dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] - z, q[3] - z )
dq[2] = __hadd2(q2.as_half2, z1z16[0]); // half2( q[4] - z, q[5] - z )
dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]); // half2( q[6] - z, q[7] - z )
}
}
#else
__forceinline__ __device__ void shuffle_4bit_8
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_4bit_8
(
const uint32_t q_0,
half2 (&dq)[4],
int stride
)
{
half dqh[8];
for (int i = 0; i < 8; i++) dqh[i] = dq_ns(exb(q_0, i * 4, 0x0f), 8);
for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero_scale
(
const uint32_t zero,
const half scale,
half2 (&z1)[2],
half2 (&y1)[2]
)
{
half z = __int2half_rn(-((int)zero));
z = __hmul(z, scale);
z1[0] = __half2half2(z);
y1[0] = __half2half2(scale);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero
(
const uint32_t zero,
half2(&z1)[2],
half2(&y1)[2]
)
{
half z = __int2half_rn(-((int)zero));
z1[0] = __half2half2(z);
}
__forceinline__ __device__ void dequant_4bit_8_gptq
(
const uint32_t q_0,
half2 (&dq)[4],
half2 (&z1)[2],
half2 (&y1)[2],
int stride,
bool scaled
)
{
half2 dqh2[8];
uint32_t qa = q_0;
for (int i = 0; i < 4; i++)
{
half d0 = __int2half_rn(qa & 0x0f); qa >>= 4;
half d1 = __int2half_rn(qa & 0x0f); qa >>= 4;
dqh2[i] = __halves2half2(d0, d1);
}
if (scaled)
{
dq[0] = __hfma2(dqh2[0], y1[0], z1[0]);
dq[1] = __hfma2(dqh2[1], y1[0], z1[0]);
dq[2] = __hfma2(dqh2[2], y1[0], z1[0]);
dq[3] = __hfma2(dqh2[3], y1[0], z1[0]);
}
else
{
dq[0] = __hadd2(dqh2[0], z1[0]);
dq[1] = __hadd2(dqh2[1], z1[0]);
dq[2] = __hadd2(dqh2[2], z1[0]);
dq[3] = __hadd2(dqh2[3], z1[0]);
}
}
#endif
#endif

View file

@ -1,207 +0,0 @@
#ifndef _qdq_5_cuh
#define _qdq_5_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_5BIT == 1
// Permutation:
//
// v5555533 33311111 u4444422 22200000 (u, v lsb)
// vbbbbb99 99977777 uaaaaa88 88866666
// vhhhhhff fffddddd ugggggee eeeccccc
// vnnnnnll llljjjjj ummmmmkk kkkiiiii
// vtttttrr rrrppppp usssssqq qqqooooo
__forceinline__ __device__ void shuffle_5bit_32
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0 * stride];
uint32_t qb = q[1 * stride];
uint32_t qc = q[2 * stride];
uint32_t qd = q[3 * stride];
uint32_t qe = q[4 * stride];
// qa: 66555554 44443333 32222211 11100000
// qb: ccccbbbb baaaaa99 99988888 77777666
// qc: jiiiiihh hhhggggg fffffeee eedddddc
// qd: pppooooo nnnnnmmm mmlllllk kkkkjjjj
// qe: vvvvvuuu uuttttts ssssrrrr rqqqqqpp
uint32_t qf = qe >> 22;
qe <<= 8;
qe |= qd >> 24;
qd <<= 6;
qd |= qc >> 26;
qc <<= 4;
qc |= qb >> 28;
qb <<= 2;
qb |= qa >> 30;
// qa: 555554 44443333 32222211 11100000
// qb: bbbbba aaaa9999 98888877 77766666
// qc: hhhhhg ggggffff feeeeedd dddccccc
// qd: nnnnnm mmmmllll lkkkkkjj jjjiiiii
// qe: ttttts ssssrrrr rqqqqqpp pppooooo
// qf: vv vvvuuuuu
uint32_t za = 0;
uint32_t zb = 0;
uint32_t zc = 0;
uint32_t zd = 0;
uint32_t ze = 0;
for (int i = 0; i < 3; i++) { uint32_t t0 = qa & 0x1f; uint32_t t1 = (qa & 0x3e0) >> 5; qa >>= 10; za |= (t0 << (i * 5)); za |= (t1 << (i * 5 + 16)); }
for (int i = 0; i < 3; i++) { uint32_t t0 = qb & 0x1f; uint32_t t1 = (qb & 0x3e0) >> 5; qb >>= 10; zb |= (t0 << (i * 5)); zb |= (t1 << (i * 5 + 16)); }
for (int i = 0; i < 3; i++) { uint32_t t0 = qc & 0x1f; uint32_t t1 = (qc & 0x3e0) >> 5; qc >>= 10; zc |= (t0 << (i * 5)); zc |= (t1 << (i * 5 + 16)); }
for (int i = 0; i < 3; i++) { uint32_t t0 = qd & 0x1f; uint32_t t1 = (qd & 0x3e0) >> 5; qd >>= 10; zd |= (t0 << (i * 5)); zd |= (t1 << (i * 5 + 16)); }
for (int i = 0; i < 3; i++) { uint32_t t0 = qe & 0x1f; uint32_t t1 = (qe & 0x3e0) >> 5; qe >>= 10; ze |= (t0 << (i * 5)); ze |= (t1 << (i * 5 + 16)); }
// za: 5555533 33311111 4444422 22200000
// zb: bbbbb99 99977777 aaaaa88 88866666
// zc: hhhhhff fffddddd gggggee eeeccccc
// zd: nnnnnll llljjjjj mmmmmkk kkkiiiii
// ze: tttttrr rrrppppp sssssqq qqqooooo
// qf: vv vvvuuuuu
za |= ((qf & 0x001) >> 0) << 15;
zb |= ((qf & 0x002) >> 1) << 15;
zc |= ((qf & 0x004) >> 2) << 15;
zd |= ((qf & 0x008) >> 3) << 15;
ze |= ((qf & 0x010) >> 4) << 15;
za |= ((qf & 0x020) >> 5) << 31;
zb |= ((qf & 0x040) >> 6) << 31;
zc |= ((qf & 0x080) >> 7) << 31;
zd |= ((qf & 0x100) >> 8) << 31;
ze |= ((qf & 0x200) >> 9) << 31;
// za: v5555533 33311111 u4444422 22200000 (u, v lsb)
// zb: vbbbbb99 99977777 uaaaaa88 88866666
// zc: vhhhhhff fffddddd ugggggee eeeccccc
// zd: vnnnnnll llljjjjj ummmmmkk kkkiiiii
// ze: vtttttrr rrrppppp usssssqq qqqooooo
q[0 * stride] = za;
q[1 * stride] = zb;
q[2 * stride] = zc;
q[3 * stride] = zd;
q[4 * stride] = ze;
}
__forceinline__ __device__ void dequant_5bit_32
(
const uint32_t q_0,
const uint32_t q_1,
const uint32_t q_2,
const uint32_t q_3,
const uint32_t q_4,
half2 (&dq)[16],
int stride
)
{
const uint32_t c0 = 0x64006400;
const half y32_ = __float2half_rn(1.0f / 32.0f);
const half2 y32 = __halves2half2(y32_, y32_);
const half z1_ = __float2half_rn(-1024.0f - 16.0f);
const half z32_ = __float2half_rn(-1024.0f / 32.0f - 16.0f);
const half2 z1 = __halves2half2(z1_, z1_);
const half2 z32 = __halves2half2(z32_, z32_);
uint32_t qa = q_0;
uint32_t qb = q_1;
uint32_t qc = q_2;
uint32_t qd = q_3;
uint32_t qe = q_4;
half2_uint32 q0 ((qa & 0x001f001f) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1 ((qa & 0x03e003e0) | c0); // half2(q[ 2], q[ 3]) * 32 + 1024
qa >>= 10;
half2_uint32 q2 ((qa & 0x001f001f) | c0); // half2(q[ 4], q[ 5]) + 1024
qa >>= 5;
qa &= 0x00010001;
half2_uint32 q3 ((qb & 0x001f001f) | c0); // half2(q[ 6], q[ 7]) + 1024
half2_uint32 q4 ((qb & 0x03e003e0) | c0); // half2(q[ 8], q[ 9]) * 32 + 1024
qb >>= 10;
half2_uint32 q5 ((qb & 0x001f001f) | c0); // half2(q[10], q[11]) + 1024
qb >>= 4;
qb &= 0x00020002;
half2_uint32 q6 ((qc & 0x001f001f) | c0); // half2(q[12], q[13]) + 1024
half2_uint32 q7 ((qc & 0x03e003e0) | c0); // half2(q[14], q[15]) * 32 + 1024
qc >>= 10;
half2_uint32 q8 ((qc & 0x001f001f) | c0); // half2(q[16], q[17]) + 1024
qc >>= 3;
qc &= 0x00040004;
half2_uint32 q9 ((qd & 0x001f001f) | c0); // half2(q[18], q[19]) + 1024
half2_uint32 q10((qd & 0x03e003e0) | c0); // half2(q[20], q[21]) * 32 + 1024
qd >>= 10;
half2_uint32 q11((qd & 0x001f001f) | c0); // half2(q[22], q[23]) + 1024
qd >>= 2;
qd &= 0x00080008;
half2_uint32 q12((qe & 0x001f001f) | c0); // half2(q[24], q[25]) + 1024
half2_uint32 q13((qe & 0x03e003e0) | c0); // half2(q[26], q[27]) * 32 + 1024
qe >>= 10;
half2_uint32 q14((qe & 0x001f001f) | c0); // half2(q[28], q[29]) + 1024
qe >>= 1;
qe &= 0x00100010;
half2_uint32 q15((qa | qb | qc | qd | qe) | c0);
dq[ 0] = __hadd2( q0.as_half2, z1);
dq[ 1] = __hfma2( q1.as_half2, y32, z32);
dq[ 2] = __hadd2( q2.as_half2, z1);
dq[ 3] = __hadd2( q3.as_half2, z1);
dq[ 4] = __hfma2( q4.as_half2, y32, z32);
dq[ 5] = __hadd2( q5.as_half2, z1);
dq[ 6] = __hadd2( q6.as_half2, z1);
dq[ 7] = __hfma2( q7.as_half2, y32, z32);
dq[ 8] = __hadd2( q8.as_half2, z1);
dq[ 9] = __hadd2( q9.as_half2, z1);
dq[10] = __hfma2(q10.as_half2, y32, z32);
dq[11] = __hadd2(q11.as_half2, z1);
dq[12] = __hadd2(q12.as_half2, z1);
dq[13] = __hfma2(q13.as_half2, y32, z32);
dq[14] = __hadd2(q14.as_half2, z1);
dq[15] = __hadd2(q15.as_half2, z1);
}
#else
__forceinline__ __device__ void shuffle_5bit_32
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_5bit_32
(
const uint32_t q_0,
const uint32_t q_1,
const uint32_t q_2,
const uint32_t q_3,
const uint32_t q_4,
half2 (&dq)[16],
int stride
)
{
half dqh[32];
for (int i = 0; i < 6; i++) dqh[ i] = dq_ns(exb( q_0, i * 5 , 0x1f), 16);
dqh[ 6 ] = dq_ns(exb(q_1, q_0, 30, 0x1f), 16);
for (int i = 0; i < 5; i++) dqh[ 7 + i] = dq_ns(exb( q_1, i * 5 + 3, 0x1f), 16);
dqh[12 ] = dq_ns(exb(q_2, q_1, 28, 0x1f), 16);
for (int i = 0; i < 6; i++) dqh[13 + i] = dq_ns(exb( q_2, i * 5 + 1, 0x1f), 16);
dqh[19 ] = dq_ns(exb(q_3, q_2, 31, 0x1f), 16);
for (int i = 0; i < 5; i++) dqh[20 + i] = dq_ns(exb( q_3, i * 5 + 4, 0x1f), 16);
dqh[25 ] = dq_ns(exb(q_4, q_3, 29, 0x1f), 16);
for (int i = 0; i < 6; i++) dqh[26 + i] = dq_ns(exb( q_4, i * 5 + 2, 0x1f), 16);
for (int i = 0; i < 16; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
#endif
#endif

View file

@ -1,44 +0,0 @@
#ifndef _qdq_6_cuh
#define _qdq_6_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_6BIT == 1
// Not implemented
#else
__forceinline__ __device__ void shuffle_6bit_16
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_6bit_16
(
const uint32_t q_0,
const uint32_t q_1,
const uint32_t q_2,
half2 (&dq)[8],
int stride
)
{
half dqh[16];
for (int i = 0; i < 5; i++) dqh[ i] = dq_ns(exb( q_0, i * 6 , 0x3f), 32);
dqh[ 5 ] = dq_ns(exb(q_1, q_0, 30, 0x3f), 32);
for (int i = 0; i < 4; i++) dqh[ 6 + i] = dq_ns(exb( q_1, i * 6 + 4, 0x3f), 32);
dqh[10 ] = dq_ns(exb(q_2, q_1, 28, 0x3f), 32);
for (int i = 0; i < 5; i++) dqh[11 + i] = dq_ns(exb( q_2, i * 6 + 2, 0x3f), 32);
for (int i = 0; i < 8; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
#endif
#endif

View file

@ -1,38 +0,0 @@
#ifndef _qdq_8_cuh
#define _qdq_8_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_8BIT == 1
// Not implemented
#else
__forceinline__ __device__ void shuffle_8bit_4
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_8bit_8
(
const uint32_t q_0,
const uint32_t q_1,
half2 (&dq)[4],
int stride
)
{
half dqh[8];
for (int i = 0; i < 4; i++) dqh[i ] = dq_ns(exb(q_0, i * 8, 0xff), 128);
for (int i = 0; i < 4; i++) dqh[i + 4] = dq_ns(exb(q_1, i * 8, 0xff), 128);
for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
#endif
#endif

View file

@ -1,51 +0,0 @@
#ifndef _qdq_util_cuh
#define _qdq_util_cuh
union half2_uint32
{
uint32_t as_uint32;
half2 as_half2;
__device__ half2_uint32(uint32_t val) : as_uint32(val) {}
__device__ half2_uint32(half2 val) : as_half2(val) {}
};
union half_uint16
{
uint16_t as_uint16;
half as_half;
__device__ half_uint16(uint16_t val) : as_uint16(val) {}
__device__ half_uint16(half val) : as_half(val) {}
};
// Max_scale premultiplied by 1/256
__forceinline__ __device__ half dq_scale(const int qs, const half max_scale)
{
int qs_i = qs + 1;
half qs_h = __int2half_rn(qs_i * qs_i);
qs_h = __hmul(qs_h, max_scale);
return qs_h;
}
__forceinline__ __device__ half dq(const int q, const int qzero, const half scale)
{
return __hmul(__int2half_rn(q - qzero), scale);
}
__forceinline__ __device__ half dq_ns(const int q, const int qzero)
{
//return __hsub(__int2half_rn(q), __int2half_rn(qzero));
return __int2half_rn(q - qzero);
}
__forceinline__ __device__ int exb(const uint32_t q, const int shift, const int mask)
{
return (int)((q >> shift) & mask);
}
__forceinline__ __device__ int exb(const uint32_t q1, const uint32_t q0, const int shift, const int mask)
{
return (int)(__funnelshift_rc(q0, q1, shift) & mask);
}
#endif

View file

@ -1,32 +0,0 @@
#define DIVIDE(x, size) (((x) + (size) - 1) / (size))
#define DBGS(__x) printf("%s\n", __x)
#define DBGI(__x) printf("%s: %i\n", #__x, __x)
#define DBGI2(__x, __y) printf("%s, %s: %i, %i\n", #__x, #__y, __x, __y)
#define DBGI3(__x, __y, __z) printf("%s, %s, %s: %i, %i, %i\n", #__x, #__y, #__z, __x, __y, __z)
#define DBGX(__x) printf("%s: %x\n", #__x, __x)
#define DBGX2(__x, __y) printf("%s, %s: %x, %x\n", #__x, #__y, __x, __y)
#define DBGX3(__x, __y, __z) printf("%s, %s, %s: %x, %x, %x\n", #__x, #__y, #__z, __x, __y, __z)
#define DBGF(__x) printf("%s: %f\n", #__x, __x)
#define DBGF2(__x, __y) printf("%s, %s: %f, %f\n", #__x, #__y, __x, __y)
#define DBGF3(__x, __y, __z) printf("%s, %s, %s: %f, %f, %f\n", #__x, #__y, #__z, __x, __y, __z)
#define DBGH(__x) printf("%s: %f\n", #__x, __half2float(__x))
#define DBGH2(__x, __y) printf("%s, %s: %f, %f\n", #__x, #__y, __half2float(__x), __half2float(__y))
#define DBGH3(__x, __y, __z) printf("%s, %s, %s: %f, %f, %f\n", #__x, #__y, #__z, __half2float(__x), __half2float(__y), __half2float(__z))
#define DBGIH(__x, __y) printf("%s, %s: %i, %f\n", #__x, #__y, __x, __half2float(__y))
#define DBGIH2(__x, __y, __z) printf("%s, %s, %s: %i, %f, %f\n", #__x, #__y, #__z, __x, __half2float(__y), __half2float(__z))
__forceinline__ __device__ half dq_scale_(const int qs, const half max_scale)
{
half qs_h = __hmul(__int2half_rn(qs + 1), __float2half_rn(1.0f / 16.0f));
qs_h = __hmul(qs_h, qs_h);
qs_h = __hmul(qs_h, max_scale);
return qs_h;
}
__forceinline__ __device__ float clamp(float x, float a, float b)
{
return fmaxf(a, fminf(b, x));
}

View file

@ -1,134 +0,0 @@
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#include "config.h"
#include "cuda/q_matrix.cuh"
#include "cuda/q_gemm.cuh"
#include "cpp/util.h"
// Some decluttering macros
#define TORCH_CHECK_DTYPE(__x, __dtype) TORCH_CHECK((__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype)
#define TORCH_CHECK_DTYPE_OPT(__x, __dtype) TORCH_CHECK((__x).device().is_meta() || (__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype)
#define TORCH_CHECK_SHAPES(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes")
#define TORCH_CHECK_SHAPES_OPT(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).device().is_meta() || (__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes")
// Quant matrix
uintptr_t make_q_matrix
(
torch::Tensor q_weight,
torch::Tensor q_perm,
torch::Tensor q_invperm,
torch::Tensor q_scale,
torch::Tensor q_scale_max,
torch::Tensor q_groups,
torch::Tensor gptq_qzeros,
torch::Tensor gptq_scales,
torch::Tensor gptq_g_idx,
torch::Tensor temp_dq
)
{
TORCH_CHECK_DTYPE(q_weight, kInt);
TORCH_CHECK_DTYPE_OPT(q_perm, kShort);
TORCH_CHECK_DTYPE_OPT(q_invperm, kShort);
TORCH_CHECK_DTYPE_OPT(q_scale, kInt);
TORCH_CHECK_DTYPE_OPT(q_scale_max, kHalf);
TORCH_CHECK_DTYPE_OPT(q_groups, kShort);
TORCH_CHECK_DTYPE_OPT(gptq_qzeros, kInt);
TORCH_CHECK_DTYPE_OPT(gptq_scales, kHalf);
TORCH_CHECK_DTYPE_OPT(gptq_g_idx, kInt);
TORCH_CHECK_SHAPES(q_perm, 0, q_invperm, 0, 1);
int device = q_weight.device().index();
int width = q_weight.size(1);
int groups;
int height;
if (!q_scale.device().is_meta())
{
TORCH_CHECK_SHAPES(q_weight, 1, q_scale, 1, 8);
TORCH_CHECK_SHAPES(q_scale_max, 0, q_scale, 0, 1);
groups = q_scale.size(0);
height = q_invperm.size(0);
}
else
{
TORCH_CHECK_SHAPES(q_weight, 1, gptq_qzeros, 1, 8);
TORCH_CHECK_SHAPES(q_weight, 1, gptq_scales, 1, 1);
groups = gptq_qzeros.size(0);
height = q_weight.size(0) * 8;
}
TORCH_CHECK(temp_dq.size(0) >= width * height, "Insufficient size of temp_dq buffer")
QMatrix* m = new QMatrix
(
device,
height,
width,
groups,
(uint32_t*) q_weight.data_ptr(),
q_perm.device().is_meta() ? NULL : (uint16_t*) q_perm.data_ptr(),
q_invperm.device().is_meta() ? NULL : (uint16_t*) q_invperm.data_ptr(),
q_scale.device().is_meta() ? NULL : (uint32_t*) q_scale.data_ptr(),
q_scale_max.device().is_meta() ? NULL : (half*) q_scale_max.data_ptr(),
q_groups.device().is_meta() ? NULL : (uint16_t*) q_groups.data_ptr(),
gptq_qzeros.device().is_meta() ? NULL : (uint32_t*) gptq_qzeros.data_ptr(),
gptq_scales.device().is_meta() ? NULL : (half*) gptq_scales.data_ptr(),
gptq_g_idx.device().is_meta() ? NULL : (uint32_t*) gptq_g_idx.data_ptr(),
(half*) temp_dq.data_ptr()
);
return reinterpret_cast<uintptr_t> (m);
}
void gemm_half_q_half
(
torch::Tensor a,
uintptr_t b,
torch::Tensor c,
bool force_cuda
)
{
QMatrix* qm = reinterpret_cast<QMatrix*> (b);
TORCH_CHECK_DTYPE(a, kHalf);
TORCH_CHECK_DTYPE(c, kHalf);
TORCH_CHECK_SHAPES(a, 0, c, 0, 1);
TORCH_CHECK(qm->height == a.size(1), "a and b have incompatible shapes")
TORCH_CHECK(qm->width == c.size(1), "b and c have incompatible shapes")
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
gemm_half_q_half_cuda
(
at::cuda::getCurrentCUDABlasHandle(),
(const half*) a.data_ptr(),
qm,
(half*) c.data_ptr(),
c.size(0), // m
c.size(1), // n
a.size(1), // k
true,
NULL,
force_cuda
);
}
// Bindings
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
m.def("make_q_matrix", &make_q_matrix, "make_q_matrix");
m.def("gemm_half_q_half", &gemm_half_q_half, "gemm_half_q_half");
}

File diff suppressed because it is too large Load diff

View file

@ -1,480 +0,0 @@
#include<omp.h>
#include<immintrin.h>
#include<fstream>
#define mymin(a,b) ((a)<(b)?(a):(b))
#define mymax(a,b) ((a)>(b)?(a):(b))
inline
void q2gemm_gs(const float* __restrict__ input,
const int* __restrict__ W,
const float* __restrict__ scales,
const float* __restrict__ zeros,
const float* __restrict__ bias,
const float* __restrict__ sums,
float* __restrict__ output,
const int n,
const int m,
const int t,
const int nb,
const int mb,
const int tb,
int ogtt,
const int gs,
const int cutoff){
#pragma omp parallel num_threads(8)
{
int tid;
const int mu = 16;
const int nu = 1;
const int tu = 32;
const int on = n / nb;
const int om = m / mb;
const __m256i mask = _mm256_set1_epi32(3);
tid = omp_get_thread_num();
int tt = ogtt;
if(tid >= cutoff){
tt -= tb;
}
const int base_output = tid >= cutoff ?
(tid-cutoff)*tt + (tt+tb)*cutoff:
tid*tt;
const int base_W = tid >= cutoff ?
((tid-cutoff)*tt + (tt+tb)*cutoff)*m/16:
tid*tt*m/16;
for(int j = 0; j < tt; j+=tb){
for(int i = 0; i < on; i++) {
for(int k = 0; k < om; k++) {
for(int i1 = 0; i1 < nb; i1+=nu) {
int j1 = 0;
for(; j1 < tb-tu+1; j1+=tu) {
for(int k1 = 0; k1 < mb; k1+=gs) {
__m256 acc0_0 = _mm256_setzero_ps();
__m256 acc0_8 = _mm256_setzero_ps();
__m256 acc0_16 = _mm256_setzero_ps();
__m256 acc0_24 = _mm256_setzero_ps();
for(int k2 = k1; k2 < k1+gs; k2+=16)
{
__m256i w0 = _mm256_loadu_si256((__m256i*)&W[base_W + j*m/16 + k*mb*tb/16 + k2*tb/16 + j1+0]);
__m256i w8 = _mm256_loadu_si256((__m256i*)&W[base_W + j*m/16 + k*mb*tb/16 + k2*tb/16 + j1+8]);
__m256i w16 = _mm256_loadu_si256((__m256i*)&W[base_W + j*m/16 + k*mb*tb/16 + k2*tb/16 + j1+16]);
__m256i w24 = _mm256_loadu_si256((__m256i*)&W[base_W + j*m/16 + k*mb*tb/16 + k2*tb/16 + j1+24]);
__m256 v0_15 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+15)*nb + i1+0]);
__m256 v0_14 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+14)*nb + i1+0]);
__m256 v0_13 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+13)*nb + i1+0]);
__m256 v0_12 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+12)*nb + i1+0]);
__m256 v0_11 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+11)*nb + i1+0]);
__m256 v0_10 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+10)*nb + i1+0]);
__m256 v0_9 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+9)*nb + i1+0]);
__m256 v0_8 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+8)*nb + i1+0]);
__m256i ws0_8 = _mm256_srli_epi32(w0, 16);
__m256i ws8_8 = _mm256_srli_epi32(w8, 16);
__m256i ws16_8 = _mm256_srli_epi32(w16, 16);
__m256i ws24_8 = _mm256_srli_epi32(w24, 16);
__m256i wsa0_8= _mm256_and_si256(ws0_8, mask);
__m256i wsa8_8= _mm256_and_si256(ws8_8, mask);
__m256i wsa16_8= _mm256_and_si256(ws16_8, mask);
__m256i wsa24_8= _mm256_and_si256(ws24_8, mask);
__m256 l0_8 = _mm256_cvtepi32_ps(wsa0_8);
__m256 l8_8 = _mm256_cvtepi32_ps(wsa8_8);
__m256 l16_8 = _mm256_cvtepi32_ps(wsa16_8);
__m256 l24_8 = _mm256_cvtepi32_ps(wsa24_8);
acc0_0 = _mm256_fmadd_ps(v0_8, l0_8, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_8, l8_8, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_8, l16_8, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_8, l24_8, acc0_24);
__m256i ws0_9 = _mm256_srli_epi32(w0, 18);
__m256i ws8_9 = _mm256_srli_epi32(w8, 18);
__m256i ws16_9 = _mm256_srli_epi32(w16, 18);
__m256i ws24_9 = _mm256_srli_epi32(w24, 18);
__m256i wsa0_9= _mm256_and_si256(ws0_9, mask);
__m256i wsa8_9= _mm256_and_si256(ws8_9, mask);
__m256i wsa16_9= _mm256_and_si256(ws16_9, mask);
__m256i wsa24_9= _mm256_and_si256(ws24_9, mask);
__m256 l0_9 = _mm256_cvtepi32_ps(wsa0_9);
__m256 l8_9 = _mm256_cvtepi32_ps(wsa8_9);
__m256 l16_9 = _mm256_cvtepi32_ps(wsa16_9);
__m256 l24_9 = _mm256_cvtepi32_ps(wsa24_9);
acc0_0 = _mm256_fmadd_ps(v0_9, l0_9, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_9, l8_9, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_9, l16_9, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_9, l24_9, acc0_24);
__m256i ws0_10 = _mm256_srli_epi32(w0, 20);
__m256i ws8_10 = _mm256_srli_epi32(w8, 20);
__m256i ws16_10 = _mm256_srli_epi32(w16, 20);
__m256i ws24_10 = _mm256_srli_epi32(w24, 20);
__m256i wsa0_10= _mm256_and_si256(ws0_10, mask);
__m256i wsa8_10= _mm256_and_si256(ws8_10, mask);
__m256i wsa16_10= _mm256_and_si256(ws16_10, mask);
__m256i wsa24_10= _mm256_and_si256(ws24_10, mask);
__m256 l0_10 = _mm256_cvtepi32_ps(wsa0_10);
__m256 l8_10 = _mm256_cvtepi32_ps(wsa8_10);
__m256 l16_10 = _mm256_cvtepi32_ps(wsa16_10);
__m256 l24_10 = _mm256_cvtepi32_ps(wsa24_10);
acc0_0 = _mm256_fmadd_ps(v0_10, l0_10, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_10, l8_10, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_10, l16_10, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_10, l24_10, acc0_24);
__m256i ws0_11 = _mm256_srli_epi32(w0, 22);
__m256i ws8_11 = _mm256_srli_epi32(w8, 22);
__m256i ws16_11 = _mm256_srli_epi32(w16, 22);
__m256i ws24_11 = _mm256_srli_epi32(w24, 22);
__m256i wsa0_11= _mm256_and_si256(ws0_11, mask);
__m256i wsa8_11= _mm256_and_si256(ws8_11, mask);
__m256i wsa16_11= _mm256_and_si256(ws16_11, mask);
__m256i wsa24_11= _mm256_and_si256(ws24_11, mask);
__m256 l0_11 = _mm256_cvtepi32_ps(wsa0_11);
__m256 l8_11 = _mm256_cvtepi32_ps(wsa8_11);
__m256 l16_11 = _mm256_cvtepi32_ps(wsa16_11);
__m256 l24_11 = _mm256_cvtepi32_ps(wsa24_11);
acc0_0 = _mm256_fmadd_ps(v0_11, l0_11, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_11, l8_11, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_11, l16_11, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_11, l24_11, acc0_24);
__m256i ws0_12 = _mm256_srli_epi32(w0, 24);
__m256i ws8_12 = _mm256_srli_epi32(w8, 24);
__m256i ws16_12 = _mm256_srli_epi32(w16, 24);
__m256i ws24_12 = _mm256_srli_epi32(w24, 24);
__m256i wsa0_12= _mm256_and_si256(ws0_12, mask);
__m256i wsa8_12= _mm256_and_si256(ws8_12, mask);
__m256i wsa16_12= _mm256_and_si256(ws16_12, mask);
__m256i wsa24_12= _mm256_and_si256(ws24_12, mask);
__m256 l0_12 = _mm256_cvtepi32_ps(wsa0_12);
__m256 l8_12 = _mm256_cvtepi32_ps(wsa8_12);
__m256 l16_12 = _mm256_cvtepi32_ps(wsa16_12);
__m256 l24_12 = _mm256_cvtepi32_ps(wsa24_12);
acc0_0 = _mm256_fmadd_ps(v0_12, l0_12, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_12, l8_12, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_12, l16_12, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_12, l24_12, acc0_24);
__m256i ws0_13 = _mm256_srli_epi32(w0, 26);
__m256i ws8_13 = _mm256_srli_epi32(w8, 26);
__m256i ws16_13 = _mm256_srli_epi32(w16, 26);
__m256i ws24_13 = _mm256_srli_epi32(w24, 26);
__m256i wsa0_13= _mm256_and_si256(ws0_13, mask);
__m256i wsa8_13= _mm256_and_si256(ws8_13, mask);
__m256i wsa16_13= _mm256_and_si256(ws16_13, mask);
__m256i wsa24_13= _mm256_and_si256(ws24_13, mask);
__m256 l0_13 = _mm256_cvtepi32_ps(wsa0_13);
__m256 l8_13 = _mm256_cvtepi32_ps(wsa8_13);
__m256 l16_13 = _mm256_cvtepi32_ps(wsa16_13);
__m256 l24_13 = _mm256_cvtepi32_ps(wsa24_13);
acc0_0 = _mm256_fmadd_ps(v0_13, l0_13, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_13, l8_13, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_13, l16_13, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_13, l24_13, acc0_24);
__m256i ws0_14 = _mm256_srli_epi32(w0, 28);
__m256i ws8_14 = _mm256_srli_epi32(w8, 28);
__m256i ws16_14 = _mm256_srli_epi32(w16, 28);
__m256i ws24_14 = _mm256_srli_epi32(w24, 28);
__m256i wsa0_14= _mm256_and_si256(ws0_14, mask);
__m256i wsa8_14= _mm256_and_si256(ws8_14, mask);
__m256i wsa16_14= _mm256_and_si256(ws16_14, mask);
__m256i wsa24_14= _mm256_and_si256(ws24_14, mask);
__m256 l0_14 = _mm256_cvtepi32_ps(wsa0_14);
__m256 l8_14 = _mm256_cvtepi32_ps(wsa8_14);
__m256 l16_14 = _mm256_cvtepi32_ps(wsa16_14);
__m256 l24_14 = _mm256_cvtepi32_ps(wsa24_14);
acc0_0 = _mm256_fmadd_ps(v0_14, l0_14, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_14, l8_14, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_14, l16_14, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_14, l24_14, acc0_24);
__m256i ws0_15 = _mm256_srli_epi32(w0, 30);
__m256i ws8_15 = _mm256_srli_epi32(w8, 30);
__m256i ws16_15 = _mm256_srli_epi32(w16, 30);
__m256i ws24_15 = _mm256_srli_epi32(w24, 30);
__m256i wsa0_15= _mm256_and_si256(ws0_15, mask);
__m256i wsa8_15= _mm256_and_si256(ws8_15, mask);
__m256i wsa16_15= _mm256_and_si256(ws16_15, mask);
__m256i wsa24_15= _mm256_and_si256(ws24_15, mask);
__m256 l0_15 = _mm256_cvtepi32_ps(wsa0_15);
__m256 l8_15 = _mm256_cvtepi32_ps(wsa8_15);
__m256 l16_15 = _mm256_cvtepi32_ps(wsa16_15);
__m256 l24_15 = _mm256_cvtepi32_ps(wsa24_15);
acc0_0 = _mm256_fmadd_ps(v0_15, l0_15, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_15, l8_15, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_15, l16_15, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_15, l24_15, acc0_24);
__m256 v0_7 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+7)*nb + i1+0]);
__m256 v0_6 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+6)*nb + i1+0]);
__m256 v0_5 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+5)*nb + i1+0]);
__m256 v0_4 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+4)*nb + i1+0]);
__m256 v0_3 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+3)*nb + i1+0]);
__m256 v0_2 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+2)*nb + i1+0]);
__m256 v0_1 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+1)*nb + i1+0]);
__m256 v0_0 = _mm256_set1_ps(input[(i*om+k)*mb*nb + (k2+0)*nb + i1+0]);
__m256i ws0_0 = _mm256_srli_epi32(w0, 0);
__m256i ws8_0 = _mm256_srli_epi32(w8, 0);
__m256i ws16_0 = _mm256_srli_epi32(w16, 0);
__m256i ws24_0 = _mm256_srli_epi32(w24, 0);
__m256i wsa0_0= _mm256_and_si256(ws0_0, mask);
__m256i wsa8_0= _mm256_and_si256(ws8_0, mask);
__m256i wsa16_0= _mm256_and_si256(ws16_0, mask);
__m256i wsa24_0= _mm256_and_si256(ws24_0, mask);
__m256 l0_0 = _mm256_cvtepi32_ps(wsa0_0);
__m256 l8_0 = _mm256_cvtepi32_ps(wsa8_0);
__m256 l16_0 = _mm256_cvtepi32_ps(wsa16_0);
__m256 l24_0 = _mm256_cvtepi32_ps(wsa24_0);
acc0_0 = _mm256_fmadd_ps(v0_0, l0_0, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_0, l8_0, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_0, l16_0, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_0, l24_0, acc0_24);
__m256i ws0_1 = _mm256_srli_epi32(w0, 2);
__m256i ws8_1 = _mm256_srli_epi32(w8, 2);
__m256i ws16_1 = _mm256_srli_epi32(w16, 2);
__m256i ws24_1 = _mm256_srli_epi32(w24, 2);
__m256i wsa0_1= _mm256_and_si256(ws0_1, mask);
__m256i wsa8_1= _mm256_and_si256(ws8_1, mask);
__m256i wsa16_1= _mm256_and_si256(ws16_1, mask);
__m256i wsa24_1= _mm256_and_si256(ws24_1, mask);
__m256 l0_1 = _mm256_cvtepi32_ps(wsa0_1);
__m256 l8_1 = _mm256_cvtepi32_ps(wsa8_1);
__m256 l16_1 = _mm256_cvtepi32_ps(wsa16_1);
__m256 l24_1 = _mm256_cvtepi32_ps(wsa24_1);
acc0_0 = _mm256_fmadd_ps(v0_1, l0_1, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_1, l8_1, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_1, l16_1, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_1, l24_1, acc0_24);
__m256i ws0_2 = _mm256_srli_epi32(w0, 4);
__m256i ws8_2 = _mm256_srli_epi32(w8, 4);
__m256i ws16_2 = _mm256_srli_epi32(w16, 4);
__m256i ws24_2 = _mm256_srli_epi32(w24, 4);
__m256i wsa0_2= _mm256_and_si256(ws0_2, mask);
__m256i wsa8_2= _mm256_and_si256(ws8_2, mask);
__m256i wsa16_2= _mm256_and_si256(ws16_2, mask);
__m256i wsa24_2= _mm256_and_si256(ws24_2, mask);
__m256 l0_2 = _mm256_cvtepi32_ps(wsa0_2);
__m256 l8_2 = _mm256_cvtepi32_ps(wsa8_2);
__m256 l16_2 = _mm256_cvtepi32_ps(wsa16_2);
__m256 l24_2 = _mm256_cvtepi32_ps(wsa24_2);
acc0_0 = _mm256_fmadd_ps(v0_2, l0_2, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_2, l8_2, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_2, l16_2, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_2, l24_2, acc0_24);
__m256i ws0_3 = _mm256_srli_epi32(w0, 6);
__m256i ws8_3 = _mm256_srli_epi32(w8, 6);
__m256i ws16_3 = _mm256_srli_epi32(w16, 6);
__m256i ws24_3 = _mm256_srli_epi32(w24, 6);
__m256i wsa0_3= _mm256_and_si256(ws0_3, mask);
__m256i wsa8_3= _mm256_and_si256(ws8_3, mask);
__m256i wsa16_3= _mm256_and_si256(ws16_3, mask);
__m256i wsa24_3= _mm256_and_si256(ws24_3, mask);
__m256 l0_3 = _mm256_cvtepi32_ps(wsa0_3);
__m256 l8_3 = _mm256_cvtepi32_ps(wsa8_3);
__m256 l16_3 = _mm256_cvtepi32_ps(wsa16_3);
__m256 l24_3 = _mm256_cvtepi32_ps(wsa24_3);
acc0_0 = _mm256_fmadd_ps(v0_3, l0_3, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_3, l8_3, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_3, l16_3, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_3, l24_3, acc0_24);
__m256i ws0_4 = _mm256_srli_epi32(w0, 8);
__m256i ws8_4 = _mm256_srli_epi32(w8, 8);
__m256i ws16_4 = _mm256_srli_epi32(w16, 8);
__m256i ws24_4 = _mm256_srli_epi32(w24, 8);
__m256i wsa0_4= _mm256_and_si256(ws0_4, mask);
__m256i wsa8_4= _mm256_and_si256(ws8_4, mask);
__m256i wsa16_4= _mm256_and_si256(ws16_4, mask);
__m256i wsa24_4= _mm256_and_si256(ws24_4, mask);
__m256 l0_4 = _mm256_cvtepi32_ps(wsa0_4);
__m256 l8_4 = _mm256_cvtepi32_ps(wsa8_4);
__m256 l16_4 = _mm256_cvtepi32_ps(wsa16_4);
__m256 l24_4 = _mm256_cvtepi32_ps(wsa24_4);
acc0_0 = _mm256_fmadd_ps(v0_4, l0_4, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_4, l8_4, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_4, l16_4, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_4, l24_4, acc0_24);
__m256i ws0_5 = _mm256_srli_epi32(w0, 10);
__m256i ws8_5 = _mm256_srli_epi32(w8, 10);
__m256i ws16_5 = _mm256_srli_epi32(w16, 10);
__m256i ws24_5 = _mm256_srli_epi32(w24, 10);
__m256i wsa0_5= _mm256_and_si256(ws0_5, mask);
__m256i wsa8_5= _mm256_and_si256(ws8_5, mask);
__m256i wsa16_5= _mm256_and_si256(ws16_5, mask);
__m256i wsa24_5= _mm256_and_si256(ws24_5, mask);
__m256 l0_5 = _mm256_cvtepi32_ps(wsa0_5);
__m256 l8_5 = _mm256_cvtepi32_ps(wsa8_5);
__m256 l16_5 = _mm256_cvtepi32_ps(wsa16_5);
__m256 l24_5 = _mm256_cvtepi32_ps(wsa24_5);
acc0_0 = _mm256_fmadd_ps(v0_5, l0_5, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_5, l8_5, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_5, l16_5, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_5, l24_5, acc0_24);
__m256i ws0_6 = _mm256_srli_epi32(w0, 12);
__m256i ws8_6 = _mm256_srli_epi32(w8, 12);
__m256i ws16_6 = _mm256_srli_epi32(w16, 12);
__m256i ws24_6 = _mm256_srli_epi32(w24, 12);
__m256i wsa0_6= _mm256_and_si256(ws0_6, mask);
__m256i wsa8_6= _mm256_and_si256(ws8_6, mask);
__m256i wsa16_6= _mm256_and_si256(ws16_6, mask);
__m256i wsa24_6= _mm256_and_si256(ws24_6, mask);
__m256 l0_6 = _mm256_cvtepi32_ps(wsa0_6);
__m256 l8_6 = _mm256_cvtepi32_ps(wsa8_6);
__m256 l16_6 = _mm256_cvtepi32_ps(wsa16_6);
__m256 l24_6 = _mm256_cvtepi32_ps(wsa24_6);
acc0_0 = _mm256_fmadd_ps(v0_6, l0_6, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_6, l8_6, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_6, l16_6, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_6, l24_6, acc0_24);
__m256i ws0_7 = _mm256_srli_epi32(w0, 14);
__m256i ws8_7 = _mm256_srli_epi32(w8, 14);
__m256i ws16_7 = _mm256_srli_epi32(w16, 14);
__m256i ws24_7 = _mm256_srli_epi32(w24, 14);
__m256i wsa0_7= _mm256_and_si256(ws0_7, mask);
__m256i wsa8_7= _mm256_and_si256(ws8_7, mask);
__m256i wsa16_7= _mm256_and_si256(ws16_7, mask);
__m256i wsa24_7= _mm256_and_si256(ws24_7, mask);
__m256 l0_7 = _mm256_cvtepi32_ps(wsa0_7);
__m256 l8_7 = _mm256_cvtepi32_ps(wsa8_7);
__m256 l16_7 = _mm256_cvtepi32_ps(wsa16_7);
__m256 l24_7 = _mm256_cvtepi32_ps(wsa24_7);
acc0_0 = _mm256_fmadd_ps(v0_7, l0_7, acc0_0);
acc0_8 = _mm256_fmadd_ps(v0_7, l8_7, acc0_8);
acc0_16 = _mm256_fmadd_ps(v0_7, l16_7, acc0_16);
acc0_24 = _mm256_fmadd_ps(v0_7, l24_7, acc0_24);
}
__m256 o0_0 = _mm256_loadu_ps(&output[base_output + j + (i1+0)*t + j1+0]);
__m256 o0_8 = _mm256_loadu_ps(&output[base_output + j + (i1+0)*t + j1+8]);
__m256 o0_16 = _mm256_loadu_ps(&output[base_output + j + (i1+0)*t + j1+16]);
__m256 o0_24 = _mm256_loadu_ps(&output[base_output + j + (i1+0)*t + j1+24]);
__m256 s0_0 = _mm256_loadu_ps(&scales[(k*mb+k1)/gs * t + base_output + j + j1+0]);
__m256 s0_8 = _mm256_loadu_ps(&scales[(k*mb+k1)/gs * t + base_output + j + j1+8]);
__m256 s0_16 = _mm256_loadu_ps(&scales[(k*mb+k1)/gs * t + base_output + j + j1+16]);
__m256 s0_24 = _mm256_loadu_ps(&scales[(k*mb+k1)/gs * t + base_output + j + j1+24]);
__m256 f0_0 = _mm256_fmadd_ps(acc0_0, s0_0, o0_0);
__m256 f0_8 = _mm256_fmadd_ps(acc0_8, s0_8, o0_8);
__m256 f0_16 = _mm256_fmadd_ps(acc0_16, s0_16, o0_16);
__m256 f0_24 = _mm256_fmadd_ps(acc0_24, s0_24, o0_24);
_mm256_storeu_ps(&output[base_output + j + (i1+0)*t + j1+0], f0_0);
_mm256_storeu_ps(&output[base_output + j + (i1+0)*t + j1+8], f0_8);
_mm256_storeu_ps(&output[base_output + j + (i1+0)*t + j1+16], f0_16);
_mm256_storeu_ps(&output[base_output + j + (i1+0)*t + j1+24], f0_24);
}
}
}
}
}
}
#pragma omp barrier
const int ngs = m/gs;
for (int i = 0; i < n; i++) {
for (int j = 0; j < tt; j+=32){
__m256 acc0 = _mm256_setzero_ps();
__m256 acc8 = _mm256_setzero_ps();
__m256 acc16 = _mm256_setzero_ps();
__m256 acc24 = _mm256_setzero_ps();
for (int i1 = 0; i1 < ngs; i1++){
__m256 r = _mm256_set1_ps(sums[i*ngs + i1]);
__m256 z0 = _mm256_loadu_ps(&zeros[base_output + i1* t + j + 0]);
__m256 z8 = _mm256_loadu_ps(&zeros[base_output + i1* t + j + 8]);
__m256 z16 = _mm256_loadu_ps(&zeros[base_output + i1* t + j + 16]);
__m256 z24 = _mm256_loadu_ps(&zeros[base_output + i1* t + j + 24]);
__m256 s0 = _mm256_loadu_ps(&scales[base_output + i1 * t + j + 0]);
__m256 s8 = _mm256_loadu_ps(&scales[base_output + i1 * t + j + 8]);
__m256 s16 = _mm256_loadu_ps(&scales[base_output + i1 * t + j + 16]);
__m256 s24 = _mm256_loadu_ps(&scales[base_output + i1 * t + j + 24]);
__m256 zs0 = _mm256_mul_ps(z0, s0);
__m256 zs8 = _mm256_mul_ps(z8, s8);
__m256 zs16 = _mm256_mul_ps(z16, s16);
__m256 zs24 = _mm256_mul_ps(z24, s24);
acc0 = _mm256_fmadd_ps(zs0, r, acc0);
acc8 = _mm256_fmadd_ps(zs8, r, acc8);
acc16 = _mm256_fmadd_ps(zs16, r, acc16);
acc24 = _mm256_fmadd_ps(zs24, r, acc24);
}
__m256 o0 = _mm256_loadu_ps(&output[i*t + base_output + j + 0]);
__m256 o8 = _mm256_loadu_ps(&output[i*t + base_output + j + 8]);
__m256 o16 = _mm256_loadu_ps(&output[i*t + base_output + j + 16]);
__m256 o24 = _mm256_loadu_ps(&output[i*t + base_output + j + 24]);
__m256 b0 = _mm256_loadu_ps(&bias[base_output + j + 0]);
__m256 b8 = _mm256_loadu_ps(&bias[base_output + j + 8]);
__m256 b16 = _mm256_loadu_ps(&bias[base_output + j + 16]);
__m256 b24 = _mm256_loadu_ps(&bias[base_output + j + 24]);
__m256 o10 = _mm256_add_ps(o0, acc0);
__m256 o18 = _mm256_add_ps(o8, acc8);
__m256 o116 = _mm256_add_ps(o16, acc16);
__m256 o124 = _mm256_add_ps(o24, acc24);
__m256 o20 = _mm256_add_ps(o10, b0);
__m256 o28 = _mm256_add_ps(o18, b8);
__m256 o216 = _mm256_add_ps(o116, b16);
__m256 o224 = _mm256_add_ps(o124, b24);
_mm256_storeu_ps(&output[i*t + base_output + j + 0], o20);
_mm256_storeu_ps(&output[i*t + base_output + j + 8], o28);
_mm256_storeu_ps(&output[i*t + base_output + j + 16], o216);
_mm256_storeu_ps(&output[i*t + base_output + j + 24], o224);
}
}
}
}
inline void qforward(const float* __restrict__ input,
const int* __restrict__ W,
const float* __restrict__ scales,
const float* __restrict__ zeros,
const float* __restrict__ bias,
const float* __restrict__ sums,
float* __restrict__ output,
int n,
int m,
int t) {
q2gemm_gs(input, W, scales, zeros, bias, sums, output, n, m, t, 1, 1024, 32, 512, 64, 9);
}
inline void pack_input(float* A, float* B){
// copy the full matrix A in blocked format into B
uint64_t idx = 0;
const int N = 1;
const int M = 4096;
const int nb = 1;
const int mb = 1024;
for(int i = 0; i < N; i+=nb){
for(int j = 0; j < M; j+=mb){
for(int jj = j; jj < mymin(j+mb, M); jj++){
for(int ii = i; ii < mymin(i+nb, N); ii++){
B[idx] = A[ii*M+jj];
idx++;
}
}
}
}
}
inline void pack_qw_inner(int* A, int* B, int cutoff){
// copy the full matrix A in blocked format into B
uint64_t idx = 0;
const int N = 256;
const int M = 4096;
const int nb = 64;
int mb = 32;
for(int j = 0, tid = 0; j < M; j+=mb, tid++){
for(int i = 0; i < N; i+=nb){
for(int ii = i; ii < mymin(i+nb, N); ii++){
for(int jj = j; jj < mymin(j+mb, M); jj++){
B[idx] = A[ii*M+jj];
idx++;
}
}
}
}
}
inline void pack_qw(int* A, int* B){
pack_qw_inner(A, B, 65);
}
inline void pack_output(float* A, float* B){
// copy the full matrix A in blocked format into B
uint64_t idx = 0;
const int N = 1;
const int M = 4096;
const int nb = 1;
const int mb = 32;
for(int i = 0; i < N; i+=nb){
for(int j = 0; j < M; j+=mb){
for(int ii = i; ii < mymin(i+nb, N); ii++){
for(int jj = j; jj < mymin(j+mb, M); jj++){
B[idx] = A[ii*M+jj];
idx++;
}
}
}
}
}
void print_parameters(){
std::ofstream outfile;
outfile.open("./autogptq_extension/qigen/tmp.csv", std::ios_base::app);
outfile << 2 << "," << 1 << "," << 16 << "," << 32 << "," << 8 << "," << 8 << "," << 64 << ",";
}

File diff suppressed because it is too large Load diff

View file

@ -1,149 +0,0 @@
def load_int(to, address, const=True):
if const:
return f"const __m256i {to} = _mm256_loadu_si256({address});"
else:
return f"__m256i {to} = _mm256_loadu_si256({address});"
def load_fp(to, address, const=True):
if const:
return f"const __m256 {to} = _mm256_loadu_ps({address});"
else:
return f"__m256 {to} = _mm256_loadu_ps({address});"
# to = a * b + c
def vfma(to, a, b, c):
return f"__m256 {to} = _mm256_fmadd_ps({a}, {b}, {c});"
def vsrli(to, a, b):
return f"const __m256i {to} = _mm256_srli_epi32({a}, {b});"
def vand(to, a, b):
return f"const __m256i {to} = _mm256_and_si256({a}, {b});"
def vbroadcast_fp(to, a):
return f"const __m256 {to} = _mm256_set1_ps({a});"
def vbroadcast_int32(to, a):
return f"__m256i {to} = _mm256_set1_epi32({a});"
def vsetzero(to):
return f"__m256 {to} = _mm256_setzero_ps();"
def vcvtepi32_ps(to, a):
return f"const __m256 {to} = _mm256_cvtepi32_ps({a});"
def _256extractf128_ps(to, a, imm):
return f"const __m128 {to} = _mm256_extractf128_ps({a}, {imm});"
def _256castps256_ps128(to, a):
return f"const __m128 {to} = _mm256_castps256_ps128({a});"
def _add_ps(to, a, b):
return f"const __m128 {to} = _mm_add_ps({a}, {b});"
def _movehl_ps(to, a, b):
return f"const __m128 {to} = _mm_movehl_ps({a}, {b});"
def _shuffle_ps(to, a, b, imm):
return f"const __m128 {to} = _mm_shuffle_ps({a}, {b}, {imm});"
def _cvtss_f32(to, a):
return f"const float {to} = _mm_cvtss_f32({a});"
def _reduce8_acc(a, b, c, d, e, f, g, h):
res = ""
res += _256extractf128_ps("hi_quad0", a, 1)
res += _256extractf128_ps("hi_quad1", b, 1)
res += _256extractf128_ps("hi_quad2", c, 1)
res += _256extractf128_ps("hi_quad3", d, 1)
res += _256extractf128_ps("hi_quad4", e, 1)
res += _256extractf128_ps("hi_quad5", f, 1)
res += _256extractf128_ps("hi_quad6", g, 1)
res += _256extractf128_ps("hi_quad7", h, 1)
res += _256castps256_ps128("lo_quad0", a)
res += _256castps256_ps128("lo_quad1", b)
res += _256castps256_ps128("lo_quad2", c)
res += _256castps256_ps128("lo_quad3", d)
res += _256castps256_ps128("lo_quad4", e)
res += _256castps256_ps128("lo_quad5", f)
res += _256castps256_ps128("lo_quad6", g)
res += _256castps256_ps128("lo_quad7", h)
res += _add_ps("sum_quad0", "lo_quad0", "hi_quad0")
res += _add_ps("sum_quad1", "lo_quad1", "hi_quad1")
res += _add_ps("sum_quad2", "lo_quad2", "hi_quad2")
res += _add_ps("sum_quad3", "lo_quad3", "hi_quad3")
res += _add_ps("sum_quad4", "lo_quad4", "hi_quad4")
res += _add_ps("sum_quad5", "lo_quad5", "hi_quad5")
res += _add_ps("sum_quad6", "lo_quad6", "hi_quad6")
res += _add_ps("sum_quad7", "lo_quad7", "hi_quad7")
res += _movehl_ps("hi_dual0", "sum_quad0", "sum_quad0")
res += _movehl_ps("hi_dual1", "sum_quad1", "sum_quad1")
res += _movehl_ps("hi_dual2", "sum_quad2", "sum_quad2")
res += _movehl_ps("hi_dual3", "sum_quad3", "sum_quad3")
res += _movehl_ps("hi_dual4", "sum_quad4", "sum_quad4")
res += _movehl_ps("hi_dual5", "sum_quad5", "sum_quad5")
res += _movehl_ps("hi_dual6", "sum_quad6", "sum_quad6")
res += _movehl_ps("hi_dual7", "sum_quad7", "sum_quad7")
res += _add_ps("sum_dual0", "sum_quad0", "hi_dual0")
res += _add_ps("sum_dual1", "sum_quad1", "hi_dual1")
res += _add_ps("sum_dual2", "sum_quad2", "hi_dual2")
res += _add_ps("sum_dual3", "sum_quad3", "hi_dual3")
res += _add_ps("sum_dual4", "sum_quad4", "hi_dual4")
res += _add_ps("sum_dual5", "sum_quad5", "hi_dual5")
res += _add_ps("sum_dual6", "sum_quad6", "hi_dual6")
res += _add_ps("sum_dual7", "sum_quad7", "hi_dual7")
res += _shuffle_ps("hi0", "sum_dual0", "sum_dual0", 0x1)
res += _shuffle_ps("hi1", "sum_dual1", "sum_dual1", 0x1)
res += _shuffle_ps("hi2", "sum_dual2", "sum_dual2", 0x1)
res += _shuffle_ps("hi3", "sum_dual3", "sum_dual3", 0x1)
res += _shuffle_ps("hi4", "sum_dual4", "sum_dual4", 0x1)
res += _shuffle_ps("hi5", "sum_dual5", "sum_dual5", 0x1)
res += _shuffle_ps("hi6", "sum_dual6", "sum_dual6", 0x1)
res += _shuffle_ps("hi7", "sum_dual7", "sum_dual7", 0x1)
res += _add_ps("sum0", "sum_dual0", "hi0")
res += _add_ps("sum1", "sum_dual1", "hi1")
res += _add_ps("sum2", "sum_dual2", "hi2")
res += _add_ps("sum3", "sum_dual3", "hi3")
res += _add_ps("sum4", "sum_dual4", "hi4")
res += _add_ps("sum5", "sum_dual5", "hi5")
res += _add_ps("sum6", "sum_dual6", "hi6")
res += _add_ps("sum7", "sum_dual7", "hi7")
res += _cvtss_f32(f"f{a}", "sum0")
res += _cvtss_f32(f"f{b}", "sum1")
res += _cvtss_f32(f"f{c}", "sum2")
res += _cvtss_f32(f"f{d}", "sum3")
res += _cvtss_f32(f"f{e}", "sum4")
res += _cvtss_f32(f"f{f}", "sum5")
res += _cvtss_f32(f"f{g}", "sum6")
res += _cvtss_f32(f"f{h}", "sum7")
return res
acc_idx = 0
def _reduce_add(a):
global acc_idx
res = ""
res += _256extractf128_ps(f"hi_quad{acc_idx}", a, 1)
res += _256castps256_ps128(f"lo_quad{acc_idx}", a)
res += _add_ps(f"sum_quad{acc_idx}", f"lo_quad{acc_idx}", f"hi_quad{acc_idx}")
res += _movehl_ps(f"hi_dual{acc_idx}", f"sum_quad{acc_idx}", f"sum_quad{acc_idx}")
res += _add_ps(f"sum_dual{acc_idx}", f"sum_quad{acc_idx}", f"hi_dual{acc_idx}")
res += _shuffle_ps(f"hi{acc_idx}", f"sum_dual{acc_idx}", f"sum_dual{acc_idx}", 0x1)
res += _add_ps(f"sum{acc_idx}", f"sum_dual{acc_idx}", f"hi{acc_idx}")
res += _cvtss_f32(f"f{a}", f"sum{acc_idx}")
acc_idx += 1
return res

Binary file not shown.

View file

@ -1,302 +0,0 @@
#include <iostream>
#include "forward.h"
#include <cstring>
#include <algorithm>
#include <vector>
#include <chrono>
#include <fstream>
#define mymin(a,b) ((a)<(b)?(a):(b))
#define mymax(a,b) ((a)>(b)?(a):(b))
void print_matrix(std::string name, float* A, int N, int M){
std::cout<<name<<std::endl;
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
std::cout << A[i*M+j] << " ";
}
std::cout << std::endl;
}
std::cout<<std::endl;
}
void oracle_mmadd(float* A, float* B, float* bias, float* C, int n, int m, int t){
// triple loop matmul and add bias
for (int i = 0; i < n; i++){
for (int j = 0; j < t; j++){
float sum = 0;
for (int k = 0; k < m; k++){
sum += A[i*m+k] * B[k*t+j];
}
C[i*t+j] += sum + bias[j];
}
}
}
void compute_reduction(float *in, float *out, int n, int m, int gs){
int ng;
if(gs == -1){
ng = 1;
gs = m;
}else{
ng = m/gs;
}
for(int i = 0; i < n; i++){
for(int j0 = 0; j0 < m; j0+=gs){
int j = j0/gs;
out[i*ng+j] = 0;
for(int j1 = j0; j1 < j0+gs; j1++){
out[i*ng+j] += in[i*m+j1];
}
}
}
}
void quantize_sim(float* A, float* BQ, float* scales, float* zeros, int n, int m, int bits, int gs){
//find scales and zeros arrays
if(gs == -1){
gs = n;
}
float range = (1<<bits) - 1;
int packed = 32 / bits;
for(int i0 = 0; i0 < n; i0+=gs){
int row = i0/gs;
for(int j = 0; j < m; j++){
float min = A[i0*m + j];
float max = A[i0*m + j];
for(int i1 = i0; i1 < i0+gs; i1++){
min = mymin(min, A[i1*m+j]);
max = mymax(max, A[i1*m+j]);
}
scales[row*m + j] = (max-min)/range;
zeros[row*m + j ] = min;
}
for(int j = 0; j < m; j++){
for (int i1 = i0; i1 < i0+gs; i1++){
uint32_t acc = 0;
int temp = (A[i1*m+j] - zeros[row*m+j])/scales[row*m+j];
float val = ((float) temp + zeros[row*m+j]) * scales[row*m+j];
BQ[i1*m+j] = val;
}
}
}
}
void quantize(float* A, int* BQ, float* scales, float* zeros, int n, int m, int bits, int gs){
//find scales and zeros arrays
if(gs == -1){
gs = n;
}
float range = (1<<bits) - 1;
int packed = 32 / bits;
for(int i0 = 0; i0 < n; i0+=gs){
int row = i0/gs;
for(int j = 0; j < m; j++){
float min = A[i0*m + j];
float max = A[i0*m + j];
for(int i1 = i0; i1 < i0+gs; i1++){
min = mymin(min, A[i1*m+j]);
max = mymax(max, A[i1*m+j]);
}
scales[row*m + j] = (max-min)/range;
zeros[row*m + j ] = min;
}
for(int j = 0; j < m; j++){
if(bits == 3){
for (int i1 = i0; i1 < i0+gs; i1+=32){
uint32_t acc = 0;
int temp0 = ((int)((A[(i1+0)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 0;
int temp1 = ((int)((A[(i1+1)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 3;
int temp2 = ((int)((A[(i1+2)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 6;
int temp3 = ((int)((A[(i1+3)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 9;
int temp4 = ((int)((A[(i1+4)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 12;
int temp5 = ((int)((A[(i1+5)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 15;
int temp6 = ((int)((A[(i1+6)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 18;
int temp7 = ((int)((A[(i1+7)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 21;
int temp8 = ((int)((A[(i1+8)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 24;
int temp9 = ((int)((A[(i1+9)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 27;
int temp10_0 = ((int)((A[(i1+10)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 30;
int temp10_1 = ((int)((A[(i1+10)*m+j] - zeros[row*m+j])/scales[row*m+j])) >> 2;
int temp11 = ((int)((A[(i1+11)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 1;
int temp12 = ((int)((A[(i1+12)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 4;
int temp13 = ((int)((A[(i1+13)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 7;
int temp14 = ((int)((A[(i1+14)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 10;
int temp15 = ((int)((A[(i1+15)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 13;
int temp16 = ((int)((A[(i1+16)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 16;
int temp17 = ((int)((A[(i1+17)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 19;
int temp18 = ((int)((A[(i1+18)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 22;
int temp19 = ((int)((A[(i1+19)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 25;
int temp20 = ((int)((A[(i1+20)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 28;
int temp21_0 = ((int)((A[(i1+21)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 31;
int temp21_1 = ((int)((A[(i1+21)*m+j] - zeros[row*m+j])/scales[row*m+j])) >> 1;
int temp22 = ((int)((A[(i1+22)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 2;
int temp23 = ((int)((A[(i1+23)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 5;
int temp24 = ((int)((A[(i1+24)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 8;
int temp25 = ((int)((A[(i1+25)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 11;
int temp26 = ((int)((A[(i1+26)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 14;
int temp27 = ((int)((A[(i1+27)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 17;
int temp28 = ((int)((A[(i1+28)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 20;
int temp29 = ((int)((A[(i1+29)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 23;
int temp30 = ((int)((A[(i1+30)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 26;
int temp31 = ((int)((A[(i1+31)*m+j] - zeros[row*m+j])/scales[row*m+j])) << 29;
int acc0 = 0, acc1 = 0, acc2 = 0;
acc0 |= temp0;
acc0 |= temp1;
acc0 |= temp2;
acc0 |= temp3;
acc0 |= temp4;
acc0 |= temp5;
acc0 |= temp6;
acc0 |= temp7;
acc0 |= temp8;
acc0 |= temp9;
acc0 |= temp10_0;
acc1 |= temp10_1;
acc1 |= temp11;
acc1 |= temp12;
acc1 |= temp13;
acc1 |= temp14;
acc1 |= temp15;
acc1 |= temp16;
acc1 |= temp17;
acc1 |= temp18;
acc1 |= temp19;
acc1 |= temp20;
acc1 |= temp21_0;
acc2 |= temp21_1;
acc2 |= temp22;
acc2 |= temp23;
acc2 |= temp24;
acc2 |= temp25;
acc2 |= temp26;
acc2 |= temp27;
acc2 |= temp28;
acc2 |= temp29;
acc2 |= temp30;
acc2 |= temp31;
BQ[(3*i1/32)*m+j] = acc0;
BQ[(3*i1/32+1)*m+j] = acc1;
BQ[(3*i1/32+2)*m+j] = acc2;
}
}else{
for (int i1 = i0; i1 < i0+gs; i1+=packed){
uint32_t acc = 0;
for (int i2 = i1; i2 < i1+packed; i2++){
int temp = (A[i2*m+j] - zeros[row*m+j])/scales[row*m+j];
acc = acc | (temp << (bits*(i2-i1)));
}
BQ[(i1/packed)*m+j] = acc;
}
}
}
}
}
int main(int argc, char *argv[]){
// read n m t from args
if(argc == 0){std::cout << "Parameters not given\n"; return 0;}
int n = atoi(argv[1]);
int m = atoi(argv[2]);
int t = atoi(argv[3]);
int bits = atoi(argv[4]);
int gs = atoi(argv[5]);
int ng;
if(gs == -1){
ng = 1;
}else{
ng = m/gs;
}
float* A = new float[n*m];
float* AB = new float[n*m];
float* B = new float[m*t];
float* BQS = new float[m*t];
float* scales = new float[t*ng];
float* zeros = new float[t*ng];
int* BQ = new int[m*t/8];
int* BQB = new int[m*t/8];
float* sums = new float[n*ng];
float* bias = new float[t];
float* C = new float[n*t];
float* CB = new float[n*t];
float* C2 = new float[n*t];
srand(1);
for (int i = 0; i < n*m; i++){
A[i] = (float)rand() / RAND_MAX;
}
for (int i = 0; i < t*m; i++){
B[i] = (float)rand() / RAND_MAX;
}
for (int i = 0; i < t; i++){
bias[i] = (float)rand() / RAND_MAX;
}
for (int i = 0; i < n*t; i++){
C[i] = 0.0;
C2[i] = 0.0;
}
quantize_sim(B,BQS,scales,zeros,m,t,bits,gs);
quantize(B,BQ,scales,zeros,m,t,bits,gs);
quantize_sim(B,BQS,scales,zeros,m,t,bits,gs);
quantize(B,BQ,scales,zeros,m,t,bits,gs);
oracle_mmadd(A, BQS, bias, C, n, m, t);
pack_input(A,AB);
pack_qw(BQ,BQB);
pack_output(C,CB);
compute_reduction(A,sums,n,m,gs);
qforward(AB,BQB,scales,zeros,bias,sums,C2,n,m,t);
float norm = 0.0;
for (int i = 0; i < n*t; i++){
norm += (C[i] - C2[i]) * (C[i] - C2[i]);
}
if(norm / (n*t) < 0.0001){
int iter = 30;
for(int _ = 0; _ < iter; _++){
qforward(AB,BQB,scales,zeros,bias,sums,C2,n,m,t);
}
int num_runs = 15;
std::vector<long int> runs(num_runs);
for(int r = 0; r < num_runs; r++){
auto start = std::chrono::high_resolution_clock::now();
for(int _ = 0; _ < iter; _++){
qforward(AB,BQB,scales,zeros,bias,sums,C2,n,m,t);
}
auto end = std::chrono::high_resolution_clock::now();
runs[r] = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
}
std::sort(runs.begin(), runs.end());
float cycles_final = runs[num_runs/2 + 1] / iter;
std::ofstream outfile;
outfile.open("./autogptq_extension/qigen/tmp.csv", std::ios_base::app);
print_parameters();
outfile << cycles_final << std::endl;
}else{
float cycles_final = int(10e12);
std::ofstream outfile;
outfile.open("./autogptq_extension/qigen/tmp.csv", std::ios_base::app);
print_parameters();
outfile << cycles_final << std::endl;
}
return 0;
}

View file

@ -1,85 +0,0 @@
def includes():
out = " \
#include <torch/all.h>\n \
#include <torch/python.h>\n \
#include <omp.h>\n \
#include <cmath>\n \
#include <immintrin.h>\n \
\n \
#define mymin(a,b) ((a)<(b)?(a):(b))\n \
#define mymax(a,b) ((a)>(b)?(a):(b))\n \
"
return out
def module(bits_list=[4, 2]):
out = 'PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {\n'
for bits in bits_list:
out += ' m.def("forward{}", &forward{}_cpu);\n'.format(bits, bits)
for bits in bits_list:
out += ' m.def("unpack_zeros{}", &unpack_zeros{});\n'.format(bits, bits)
for bits in bits_list:
out += ' m.def("forward_gs{}", &forward{}_gs_cpu);\n'.format(bits, bits)
for bits in bits_list:
out += ' m.def("pack{}", &pack{}_w_cpu);\n'.format(bits, bits)
out += 'm.def("compute_reduction_cpp", &compute_reduction);\n'
out += 'm.def("unquantize_sim", &unquantize_sim);\n'
# if oracle:
# out += ' m.def("forward4_oracle", &forward4_oracle_cpu);\n'
out += 'm.def("quant_scalar_scaled", &quant_scalar_cpu);\n'
out += '}\n'
return out
def quant_scalar():
out = " \
void quantize_scalar(float* A, int* BQ, float* scales, float* zeros, int n, int m, int bits){ \n \
//find scales and zeros arrays \n \
//quantize \n \
int pack = 32/bits;\n \
for (int j = 0; j < m; j++){\n \
for (int i = 0; i < n; i+=pack){\n \
uint32_t acc = 0;\n \
for (int ii = i; ii < i+pack; ii++){\n \
float ftemp = std::round((A[ii*m+j] + zeros[j])/scales[j]);\n \
int temp = (int)ftemp;\n \
acc = acc | (temp << (bits*(ii-i)));\n \
}\n \
BQ[(i/pack)*m+j] = acc;\n \
//BQ[0] = acc;\n \
}\n \
}\n \
}\n \
\n \
void quant_scalar_cpu(\n \
torch::Tensor in, torch::Tensor out, \n \
torch::Tensor scales, torch::Tensor zeros, int bits\n \
) {\n \
\n \
int N = in.size(0);\n \
int M = in.size(1);\n \
\n \
float* input = in.data_ptr<float>(); \n \
float* s = scales.data_ptr<float>();\n \
float* z = zeros.data_ptr<float>();\n \
int* O = out.data_ptr<int>();\n \
\n \
quantize_scalar(input, O, s, z, N, M, bits);\n \
\n \
}\n"
return out

View file

@ -1,37 +0,0 @@
bits,nu,mu,tu,unroll,p,gs,time
4,1,16,16,1,8,-1,1.3814e+06
4,1,16,16,2,8,-1,1.44087e+06
4,1,16,16,4,8,-1,1.56173e+06
4,1,16,16,8,8,-1,1.41389e+06
3,1,16,16,5,8,-1,2.14748e+09
2,1,16,16,1,8,-1,1.09513e+06
2,1,16,16,2,8,-1,1.11322e+06
2,1,16,16,4,8,-1,1.12031e+06
2,1,16,16,8,8,-1,1.19086e+06
4,1,16,16,1,8,64,1.69111e+06
4,1,16,16,2,8,64,1.60056e+06
4,1,16,16,4,8,64,1.41263e+06
4,1,16,16,8,8,64,1.74572e+06
3,1,16,16,5,8,64,1.48062e+06
2,1,16,16,1,8,64,1.51234e+06
2,1,16,16,2,8,64,1.68108e+06
2,1,16,16,4,8,64,1.7624e+06
2,1,16,16,8,8,64,1.69563e+06
4,1,16,32,1,8,-1,1.24798e+06
4,1,16,32,2,8,-1,1.58421e+06
4,1,16,32,4,8,-1,2.10718e+06
4,1,16,32,8,8,-1,1.54288e+06
3,1,16,32,5,8,-1,2.14748e+09
2,1,16,32,1,8,-1,1.55906e+06
2,1,16,32,2,8,-1,1.58576e+06
2,1,16,32,4,8,-1,1.57993e+06
2,1,16,32,8,8,-1,1.80443e+06
4,1,16,32,1,8,64,1.58354e+06
4,1,16,32,2,8,64,1.63248e+06
4,1,16,32,4,8,64,1.91902e+06
4,1,16,32,8,8,64,1.9243e+06
3,1,16,32,5,8,64,1.33812e+06
2,1,16,32,1,8,64,1.77522e+06
2,1,16,32,2,8,64,1.54702e+06
2,1,16,32,4,8,64,1.78772e+06
2,1,16,32,8,8,64,1.49612e+06
1 bits nu mu tu unroll p gs time
2 4 1 16 16 1 8 -1 1.3814e+06
3 4 1 16 16 2 8 -1 1.44087e+06
4 4 1 16 16 4 8 -1 1.56173e+06
5 4 1 16 16 8 8 -1 1.41389e+06
6 3 1 16 16 5 8 -1 2.14748e+09
7 2 1 16 16 1 8 -1 1.09513e+06
8 2 1 16 16 2 8 -1 1.11322e+06
9 2 1 16 16 4 8 -1 1.12031e+06
10 2 1 16 16 8 8 -1 1.19086e+06
11 4 1 16 16 1 8 64 1.69111e+06
12 4 1 16 16 2 8 64 1.60056e+06
13 4 1 16 16 4 8 64 1.41263e+06
14 4 1 16 16 8 8 64 1.74572e+06
15 3 1 16 16 5 8 64 1.48062e+06
16 2 1 16 16 1 8 64 1.51234e+06
17 2 1 16 16 2 8 64 1.68108e+06
18 2 1 16 16 4 8 64 1.7624e+06
19 2 1 16 16 8 8 64 1.69563e+06
20 4 1 16 32 1 8 -1 1.24798e+06
21 4 1 16 32 2 8 -1 1.58421e+06
22 4 1 16 32 4 8 -1 2.10718e+06
23 4 1 16 32 8 8 -1 1.54288e+06
24 3 1 16 32 5 8 -1 2.14748e+09
25 2 1 16 32 1 8 -1 1.55906e+06
26 2 1 16 32 2 8 -1 1.58576e+06
27 2 1 16 32 4 8 -1 1.57993e+06
28 2 1 16 32 8 8 -1 1.80443e+06
29 4 1 16 32 1 8 64 1.58354e+06
30 4 1 16 32 2 8 64 1.63248e+06
31 4 1 16 32 4 8 64 1.91902e+06
32 4 1 16 32 8 8 64 1.9243e+06
33 3 1 16 32 5 8 64 1.33812e+06
34 2 1 16 32 1 8 64 1.77522e+06
35 2 1 16 32 2 8 64 1.54702e+06
36 2 1 16 32 4 8 64 1.78772e+06
37 2 1 16 32 8 8 64 1.49612e+06

View file

@ -1,13 +1,4 @@
## <center>News or Update</center> ## <center>News or Update</center>
- 2023-08-23 - (News) - 🤗 Transformers, optimum and peft have integrated `auto-gptq`, so now running and training GPTQ models can be more available to everyone! See [this blog](https://huggingface.co/blog/gptq-integration) and it's resources for more details!
- 2023-08-21 - (News) - Team of Qwen officially released 4bit quantized version of Qwen-7B based on `auto-gptq`, and provided [a detailed benchmark results](https://huggingface.co/Qwen/Qwen-7B-Chat-Int4#%E9%87%8F%E5%8C%96-quantization)
- 2023-08-06 - (Update) - Support exllama's q4 CUDA kernel to have at least 1.3x speed up for int4 quantized models when doing inference.
- 2023-08-04 - (Update) - Support RoCm so that AMD GPU users can use auto-gptq with CUDA extensions.
- 2023-07-26 - (Update) - An elegant [PPL benchmark script](examples/benchmark/perplexity.py) to get results that can be fairly compared with other libraries such as `llama.cpp`.
- 2023-06-05 - (Update) - Integrate with 🤗 peft to use gptq quantized model to train adapters, support LoRA, AdaLoRA, AdaptionPrompt, etc.
- 2023-05-30 - (Update) - support download/upload quantized model from/to 🤗 Hub.
- 2023-05-27 - (Update) - Support quantization and inference for `gpt_bigcode`, `codegen` and `RefineWeb/RefineWebModel`(falcon) model types.
- 2023-05-04 - (Update) - Support using faster cuda kernel when `not desc_act or group_size == -1` - 2023-05-04 - (Update) - Support using faster cuda kernel when `not desc_act or group_size == -1`
- 2023-04-29 - (Update) - Support loading quantized model from arbitrary quantize_config and model_basename. - 2023-04-29 - (Update) - Support loading quantized model from arbitrary quantize_config and model_basename.
- 2023-04-28 - (Update) - Support CPU offload and quantize/inference on multiple devices, support `gpt2` type models. - 2023-04-28 - (Update) - Support CPU offload and quantize/inference on multiple devices, support `gpt2` type models.

View file

@ -78,9 +78,9 @@ Pretrained model's config and the quantize config will also be saved with file n
Instead of `.from_pretrained`, you should use `.from_quantized` to load a quantized model. Instead of `.from_pretrained`, you should use `.from_quantized` to load a quantized model.
```python ```python
device = "cuda:0" device = "cuda:0"
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device=device) model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, use_triton=False)
``` ```
This will first read and load `quantize_config.json` in `opt-125m-4bit-128g` directory, then based on the values of `bits` and `group_size` in it, load `gptq_model-4bit-128g.bin` model file into the first visible GPU. This will first read and load `quantize_config.json` in `opt-125m-4bit-128g` directory, then based on the values of `bits` and `group_size` in it, load `gptq_model-4bit-128g.bin` model file into the first GPU.
Then you can initialize 🤗 Transformers' `TextGenerationPipeline` and do inference. Then you can initialize 🤗 Transformers' `TextGenerationPipeline` and do inference.
```python ```python

View file

@ -4,17 +4,13 @@ Welcome to the tutorial of AutoGPTQ, in this chapter, you will learn advanced mo
## Arguments Introduction ## Arguments Introduction
In previous chapter, you learned how to load model into CPU or single GPU with the two basic apis: In previous chapter, you learned how to load model into CPU or single GPU with the two basic apis:
- `.from_pretrained`: by default, load the whole pretrained model into CPU. - `.from_pretrained`: by default, load the whole pretrained model into CPU.
- `.from_quantized`: by default, `auto_gptq` will automatically find the suitable way to load the quantized model. - `.from_quantized`: by default, load the whole quantized model into CPU, one can set `device='cuda'` to load model into a single GPU.
- if there is only single GPU and model can fit into it, will load the whole model into that GPU;
- if there are multiple GPUs and model can fit into them, will evenly split model and load into those GPUs;
- if model can't fit into GPU(s), will use CPU offloading.
However, the default settings above may not meet many users' demands, for they want to have more control of model loading. However, the default settings above may not meet many users' demands, for they want to try really large models but haven't enough CPU/GPU memory.
Luckily, in AutoGPTQ, we provide some advanced arguments that users can tweak to manually config model loading strategy: Luckily, in AutoGPTQ, we provide two advanced arguments that users can tweak based on the memory of hardware:
- `low_cpu_mem_usage`: `bool` type argument, defaults to False, can be used both in `.from_pretrained` and `.from_quantized`, one can enable it when there is a limitation of CPU memory(by default model will be initialized in CPU) or want to load model faster.
- `max_memory`: an optional `List[Dict[Union[str, int], str]]` type argument, can be used both in `.from_pretrained` and `.from_quantized`. - `max_memory`: an optional `List[Dict[Union[str, int], str]]` type argument, can be used both in `.from_pretrained` and `.from_quantized`.
- `device_map`: an optional `Union[str, Dict[str, Union[int, str]]]` type argument, currently only be supported in `.from_quantized`. - `device_map`: an optional `str` type argument, currently only be supported in `.from_quantized`.
Before `auto-gptq`'s existence, there are many users have already used other popular tools such as [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa) to quantize their model and saved with different name without `quantize_config.json` file introduced in previous chapter. Before `auto-gptq`'s existence, there are many users have already used other popular tools such as [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa) to quantize their model and saved with different name without `quantize_config.json` file introduced in previous chapter.
@ -54,21 +50,19 @@ max_memory = {0: "20GIB", "cpu": "20GIB"}
In this case, you can also load model that smaller than 40GB but the rest 20GB will be kept in CPU memory, only be collected into GPU when needed. In this case, you can also load model that smaller than 40GB but the rest 20GB will be kept in CPU memory, only be collected into GPU when needed.
### device_map ### device_map
So far, only `.from_quantized` supports this argument. So far, only `.from_quantized` supports this argument. You can specify it to use pre-set model loading strategies. Because under the hood, modules in model will be mapped to different devices based on the given `max_memory`, it's more convenient to use `device_map` directly if you don't want to spend much time on calculating how much memory in each device should be use to load model.
You can provide a string to this argument to use pre-set model loading strategies. Current valid values are `["auto", "balanced", "balanced_low_0", "sequential"]` In the simplest way, you can set `device_map='auto'` and let 🤗 Accelerate handle the device map computation. For more pre-set strategies, you can reference to [this document](https://huggingface.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
In the simplest way, you can set `device_map='auto'` and let 🤗 Accelerate handle the device map computation. For more details of this argument, you can reference to [this document](https://huggingface.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
## Best Practice ## Best Practice
### At Quantization ### At Quantization
It's always recommended to first consider loading the whole model into GPU(s) for it can save the time spend on transferring module's weights between CPU and GPU. It's always recommended to first consider loading the whole model into GPU(s) for it can save the time spend on transferring module's weights between CPU and GPU.
However, not everyone have large GPU memory. Roughly speaking, always specify the maximum memory CPU will be used to load model, then, for each GPU, you can preserve memory that can fit in 1\~2(2\~3 for the first GPU incase CPU offload used) model layers for examples' tensors and calculations in quantization, and load model weights using all others left. By this, all you need to do is a simple math based on the number of GPUs you have, the size of model weights file(s) and the number of model layers. However, not everyone have large GPU memory. Roughly speaking, always specify the maximum memory CPU will be used to load model, then, for each GPU, you can preserve memory that can fit in 1~2(2~3 for the first GPU incase CPU offload used) model layers for examples' tensors and calculations in quantization, and load model weights using all others left. By this, all you need to do is a simple math based on the number of GPUs you have, the size of model weights file(s) and the number of model layers.
### At Inference ### At Inference
For inference, following this principle: always using single GPU if you can, otherwise multiple GPUs, CPU offload is the last one to consider. For inference, following this principle: always using single GPU if you can, otherwise multiple GPUs, CPU offload is the last one to consider.
## Conclusion ## Conclusion
Congrats! You learned the advanced strategies to load model using `.from_pretrained` and `.from_quantized` in `auto-gptq` with some best practice advices. In the next chapter, you will learn how to quickly customize an AutoGPTQ model and use it to quantize and inference. Congrats! You learned the advanced strategies to load model using `.from_pretrained` and `.from_quantized` in `auto-gptq` with some best practice advices. In the next chapter, you will learn how to quickly customize an AutoGPTQ model and use it to quantize and inference.

View file

@ -11,11 +11,9 @@ To Execute `basic_usage.py`, using command like this:
python basic_usage.py python basic_usage.py
``` ```
This script also showcases how to download/upload quantized model from/to 🤗 Hub, to enable those features, you can uncomment the commented codes. To Execute `basic_usage_with_wikitext2.py`, using command like this:
To Execute `basic_usage_wikitext2.py`, using command like this:
```shell ```shell
python basic_usage_wikitext2.py python basic_usage_with_wikitext2.py
``` ```
> Note: There is about 0.6 ppl degrade on opt-125m model using AutoGPTQ, compared to GPTQ-for-LLaMa. > Note: There is about 0.6 ppl degrade on opt-125m model using AutoGPTQ, compared to GPTQ-for-LLaMa.
@ -62,52 +60,21 @@ CUDA_VISIBLE_DEVICES=0 python run_text_summarization_task.py --base_model_dir PA
Use `--help` flag to see detailed descriptions for more command arguments. Use `--help` flag to see detailed descriptions for more command arguments.
## Benchmark ## Push To Hub
> Commands in this chapter should be run under `benchmark` folder. > Commands in this chapter should be run under `push_to_hub` folder.
### Generation Speed You can upload and share your quantized model to Hugging Face Hub by using `push_to_hub` function.
`generation_speed.py` script gives an example of how to benchmark the generations speed of pretrained and quantized models that `auto_gptq` supports, this benchmarks model generation speed in tokens/s metric.
To execute this script, using command like this: `push_quantized_model_to_hf_hub.py` provide a simple example to upload quantized model, tokenizer and configs at once.
First, you need to login, run the following command in the virtual environment where Hugging Face Transformers is installed:
```shell ```shell
CUDA_VISIBLE_DEVICES=0 python generation_speed.py --model_name_pr_path PATH/TO/MODEL/DIR huggingface-cli login
``` ```
Use `--help` flag to see detailed descriptions for more command arguments. Then run the script like this:
## PEFT
> Commands in this chapter should be run under `peft` folder.
### Lora
`peft_lora_clm_instruction_tuning.py` script gives an example of instruction tuning gptq quantized model's lora adapter using tools in `auto_gptq.utils.peft_utils` and `🤗 peft` on alpaca dataset.
To execute this script, using command like this:
```shell ```shell
CUDA_VISIBLE_DEVICES=0 python peft_lora_clm_instruction_tuning.py --model_name_or_path PATH/TO/MODEL/DIR python push_quantized_model_to_hf_hub.py --quantized_model_dir PATH/TO/QUANTIZED/MODEL/DIR --tokenizer_dir PATH/TO/TOKENIZER/DIR --repo_id REPO/ID
``` ```
Use `--help` flag to see detailed descriptions for more command arguments. Use `--help` flag to see detailed descriptions for more command arguments.
### AdaLora
`peft_adalora_clm_instruction_tuning.py` script gives an example of instruction tuning gptq quantized model's adalora adapter using tools in `auto_gptq.utils.peft_utils` and `🤗 peft` on alpaca dataset.
To execute this script, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python peft_adalora_clm_instruction_tuning.py --model_name_or_path PATH/TO/MODEL/DIR
```
Use `--help` flag to see detailed descriptions for more command arguments.
### AdaptionPrompt
`peft_adaption_prompt_clm_instruction_tuning.py` script gives an example of instruction tuning gptq quantized model's adaption_prompt adapter(llama-adapter) using tools in `auto_gptq.utils.peft_utils` and `🤗 peft` on alpaca dataset.
To execute this script, using command like this:
```shell
CUDA_VISIBLE_DEVICES=0 python peft_adaption_prompt_clm_instruction_tuning.py --model_name_or_path PATH/TO/MODEL/DIR
```
Use `--help` flag to see detailed descriptions for more command arguments.
If you want to try models other than llama, you can install peft from source using [this branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt), see [here](https://github.com/PanQiWei/peft/blob/a5f8f74f07591efe5eb3d08cb1b31b981e84a069/src/peft/tuners/adaption_prompt.py#L235)
to check what other models are also supported, and with this branch installed, you can also use `ADAPTION_PROMPT_V2` peft type (llama-adapter-v2) by simply replace `AdaptionPromptConfig` with `AdaptionPromptV2Config` in the script.

View file

@ -1,318 +0,0 @@
import json
import time
import logging
import random
from argparse import ArgumentParser
from itertools import chain
from typing import Dict, List, Optional
import torch
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from tqdm import tqdm
from transformers import AutoTokenizer, GenerationConfig
from transformers.generation.logits_process import LogitsProcessor
from datasets import Dataset
logger = logging.getLogger(__name__)
random.seed(0)
class CustomizedMinNewTokensLogitsProcessor(LogitsProcessor):
def __init__(
self,
min_new_tokens: int = None,
eos_token_id: int = None,
):
self.eos_token_id = eos_token_id
self.min_new_tokens = min_new_tokens or 0
self.current_step = 0
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
self.current_step += 1
if self._skip_process():
return scores
if any(each is not None for each in [self.eos_token_id]):
banned_mask = torch.zeros_like(scores).to(scores.device)
if self.eos_token_id and self.current_step <= self.min_new_tokens:
banned_mask = self._fill_banned_mask(input_ids, banned_mask, {1: [[self.eos_token_id]]})
scores = scores.masked_fill(banned_mask.bool(), -float("inf"))
return scores
def _skip_process(self):
if self.current_step > self.min_new_tokens:
return True
return False
@staticmethod
def _fill_banned_mask(
input_ids: torch.LongTensor,
banned_mask: torch.Tensor,
len2words_ids: Dict[int, List[List[int]]]
):
for token_len, token_ids in len2words_ids.items():
if token_len == 1:
banned_mask[..., list(chain(*token_ids))] = 1
elif input_ids.shape[-1] < token_len - 1:
continue
else:
token_ids = torch.LongTensor(token_ids).to(input_ids.device)
hit_masks = torch.all(
token_ids[..., :-1].unsqueeze(0).repeat(input_ids.shape[0], 1, 1)
== input_ids[..., -(token_ids.shape[-1] - 1):].unsqueeze(1),
dim=-1
)
for idx in range(hit_masks.shape[0]):
selected_token_ids = torch.masked_select(token_ids[..., -1], hit_masks[idx])
if len(selected_token_ids):
banned_mask[idx, selected_token_ids] = 1
return banned_mask
def load_data(data_path, tokenizer, n_samples, max_new_tokens):
with open(data_path, "r", encoding="utf-8") as f:
raw_data = json.load(f)
raw_data = random.sample(raw_data, k=min(n_samples, len(raw_data)))
def dummy_gen():
return raw_data
def tokenize(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
prompts = []
texts = []
input_ids = []
attention_mask = []
for istr, inp, opt in zip(instructions, inputs, outputs):
if inp:
prompt = f"Instruction:\n{istr}\nInput:\n{inp}\nOutput:\n"
text = prompt + opt
else:
prompt = f"Instruction:\n{istr}\nOutput:\n"
text = prompt + opt
if len(tokenizer(prompt)["input_ids"]) >= tokenizer.model_max_length - max_new_tokens:
continue
tokenized_data = tokenizer(text)
input_ids.append(tokenized_data["input_ids"][: tokenizer.model_max_length])
attention_mask.append(tokenized_data["attention_mask"][: tokenizer.model_max_length])
prompts.append(prompt)
texts.append(text)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"prompt": prompts
}
dataset = Dataset.from_generator(dummy_gen)
dataset = dataset.map(
tokenize,
batched=True,
batch_size=len(dataset),
num_proc=1,
keep_in_memory=True,
load_from_cache_file=False,
remove_columns=["instruction", "input"]
)
dataset = dataset.to_list()
for sample in dataset:
sample["input_ids"] = torch.LongTensor(sample["input_ids"])
sample["attention_mask"] = torch.LongTensor(sample["attention_mask"])
return dataset
def load_model_tokenizer(
model_name_or_path: str,
tokenizer_name_or_path: Optional[str] = None,
from_pretrained: bool = False,
max_memory: Optional[dict] = None,
model_basename: Optional[str] = None,
quantize_config: Optional[str] = None,
trust_remote_code: bool = False,
use_triton: bool = False,
use_safetensors: bool = False,
use_fast_tokenizer: bool = False,
inject_fused_attention: bool = True,
inject_fused_mlp: bool = True,
disable_exllama: bool = False
):
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=tokenizer_name_or_path or model_name_or_path,
use_fast=use_fast_tokenizer,
trust_remote_code=trust_remote_code
)
if not tokenizer.pad_token_id:
tokenizer.pad_token_id = tokenizer.eos_token_id
if from_pretrained:
model = AutoGPTQForCausalLM.from_pretrained(
pretrained_model_name_or_path=model_name_or_path,
quantize_config=BaseQuantizeConfig(),
max_memory=max_memory,
trust_remote_code=trust_remote_code
)
else:
model = AutoGPTQForCausalLM.from_quantized(
model_name_or_path,
max_memory=max_memory,
low_cpu_mem_usage=True,
use_triton=use_triton,
inject_fused_attention=inject_fused_attention,
inject_fused_mlp=inject_fused_mlp,
use_cuda_fp16=True,
quantize_config=quantize_config,
model_basename=model_basename,
use_safetensors=use_safetensors,
trust_remote_code=trust_remote_code,
warmup_triton=False,
disable_exllama=disable_exllama
)
return model, tokenizer
def benchmark_generation_speed(model, tokenizer, examples, generation_config):
generation_time_list = []
num_generated_tokens_list = []
progress_bar = tqdm(examples)
for example in progress_bar:
input_ids = example["input_ids"].to(model.device)
start = time.time()
outputs_ids = model.generate(
input_ids=input_ids.unsqueeze(0),
generation_config=generation_config,
logits_processor=[
CustomizedMinNewTokensLogitsProcessor(generation_config.max_new_tokens, tokenizer.eos_token_id)
]
)
end = time.time()
generation_time_list.append(end - start)
num_generated_tokens = 0
for output_ids in outputs_ids:
num_generated_tokens += len(
[
token_id for token_id in output_ids[len(input_ids):] if token_id != tokenizer.pad_token_id
]
)
num_generated_tokens_list.append(num_generated_tokens)
progress_bar.set_postfix(
num_tokens=num_generated_tokens_list[-1],
time=generation_time_list[-1],
speed=f"{num_generated_tokens_list[-1] / generation_time_list[-1]:.4f}tokens/s"
)
total_tokens = sum(num_generated_tokens_list)
total_seconds = sum(generation_time_list)
logger.info(
f"generated {total_tokens} tokens using {total_seconds} seconds, "
f"generation speed: {total_tokens / total_seconds}tokens/s"
)
def main():
parser = ArgumentParser()
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--tokenizer_name_or_path", type=str, default=None)
parser.add_argument("--from_pretrained", action="store_true")
parser.add_argument("--model_basename", type=str, default=None)
parser.add_argument("--quantize_config_save_dir", type=str, default=None)
parser.add_argument("--trust_remote_code", action="store_true")
parser.add_argument("--use_triton", action="store_true")
parser.add_argument("--use_safetensors", action="store_true")
parser.add_argument("--use_fast_tokenizer", action="store_true")
parser.add_argument("--disable_exllama", action="store_true")
parser.add_argument("--no_inject_fused_attention", action="store_true")
parser.add_argument("--no_inject_fused_mlp", action="store_true")
parser.add_argument("--num_samples", type=int, default=10)
parser.add_argument("--per_gpu_max_memory", type=int, default=None)
parser.add_argument("--cpu_max_memory", type=int, default=None)
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument("--do_sample", action="store_true")
parser.add_argument("--num_beams", type=int, default=1)
args = parser.parse_args()
max_memory = dict()
if args.per_gpu_max_memory is not None and args.per_gpu_max_memory > 0:
if torch.cuda.is_available():
max_memory.update(
{i: f"{args.per_gpu_max_memory}GIB" for i in range(torch.cuda.device_count())}
)
if args.cpu_max_memory is not None and args.cpu_max_memory > 0 and max_memory:
max_memory["cpu"] = f"{args.cpu_max_memory}GIB"
if not max_memory:
max_memory = None
logger.info(f"max_memory: {max_memory}")
quantize_config = None
if args.quantize_config_save_dir:
quantize_config = BaseQuantizeConfig.from_pretrained(args.quantize_config_save_dir)
logger.info("loading model and tokenizer")
start = time.time()
model, tokenizer = load_model_tokenizer(
model_name_or_path=args.model_name_or_path,
tokenizer_name_or_path=args.tokenizer_name_or_path,
from_pretrained=args.from_pretrained,
max_memory=max_memory,
model_basename=args.model_basename,
quantize_config=quantize_config,
trust_remote_code=args.trust_remote_code,
use_triton=args.use_triton,
use_safetensors=args.use_safetensors,
use_fast_tokenizer=args.use_fast_tokenizer,
inject_fused_attention=not args.no_inject_fused_attention,
inject_fused_mlp=not args.no_inject_fused_mlp,
disable_exllama=args.disable_exllama
)
end = time.time()
logger.info(f"model and tokenizer loading time: {end - start:.4f}s")
logger.info(f"model quantized: {model.quantized}")
logger.info(f"quantize config: {model.quantize_config.to_dict()}")
logger.info(f"model device map: {model.hf_device_map}")
if args.use_triton:
logger.info("warmup triton, this may take a while.")
model.warmup_triton()
logger.info("loading data")
examples = load_data(
"../quantization/dataset/alpaca_data_cleaned.json", tokenizer, args.num_samples, args.max_new_tokens
)
generation_config = GenerationConfig(
num_beams=args.num_beams,
num_return_sequences=args.num_beams,
do_sample=args.do_sample,
min_new_tokens=args.max_new_tokens,
max_new_tokens=args.max_new_tokens,
pad_token_id=tokenizer.pad_token_id
)
logger.info(f"generation config: {generation_config.to_dict()}")
logger.info(f"benchmark generation speed")
benchmark_generation_speed(model, tokenizer, examples, generation_config)
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
main()

View file

@ -1,88 +0,0 @@
import os
import argparse
import torch
from auto_gptq.utils import Perplexity
from transformers import AutoTokenizer
if __name__ == "__main__":
"""
Example usage.
Default usage with GPT2 model:
python examples/benchmark/perplexity.py
Specify GPTQ quantized model:
python examples/benchmark/perplexity.py \
--model_name TheBloke/open-llama-7b-open-instruct-GPTQ \
--model_basename gptq_model-4bit-128g \
--is_quantized
Change your dataset:
python examples/benchmark/perplexity.py --dataset_path tiny_shakespeare
"""
parser = argparse.ArgumentParser(description="Calculate Perplexity for a model.")
parser.add_argument("--model_name", type=str, default='gpt2', help="Model name.")
parser.add_argument("--model_basename", type=str, default=None, help="Model file's basename.")
parser.add_argument("--n_ctx", type=int, default=512, help="Context size.")
parser.add_argument("--n_batch", type=int, default=512, help="Batch size.")
parser.add_argument("--dataset_path", type=str, default='wikitext', help="Path to the dataset.")
parser.add_argument("--dataset_name", type=str, default=None, help="Name of the dataset.")
parser.add_argument("--split", type=str, default='test', help="Dataset split to use.")
parser.add_argument("--text_column", type=str, default='text', help="Column in the dataset containing the text.")
parser.add_argument("--per_gpu_max_memory", type=int, default=None, help="Max memory used in each GPU.")
parser.add_argument("--cpu_max_memory", type=int, default=None, help="Mx memory used in CPU.")
parser.add_argument("--is_quantized", action="store_true", help="Is the model GPTQ quantized?")
parser.add_argument("--use_safetensors", action="store_true", help="Whether to use safetensors model file")
parser.add_argument("--use_fast_tokenizer", action="store_true", help="Wheter to use fast tokenizer")
parser.add_argument("--trust_remote_code", action="store_true", help="Whether to use remote code")
parser.add_argument("--disable_exllama", action="store_true", help="Whether to use disable exllama kernel")
args = parser.parse_args()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
tokenizer = AutoTokenizer.from_pretrained(args.model_name, use_fast=args.use_fast_tokenizer)
if not tokenizer.pad_token_id:
tokenizer.pad_token_id = tokenizer.eos_token_id
max_memory = dict()
if args.per_gpu_max_memory is not None and args.per_gpu_max_memory > 0:
if torch.cuda.is_available():
max_memory.update(
{i: f"{args.per_gpu_max_memory}GIB" for i in range(torch.cuda.device_count())}
)
if args.cpu_max_memory is not None and args.cpu_max_memory > 0 and max_memory:
max_memory["cpu"] = f"{args.cpu_max_memory}GIB"
if not max_memory:
max_memory = None
if args.is_quantized:
from auto_gptq import AutoGPTQForCausalLM
model = AutoGPTQForCausalLM.from_quantized(
args.model_name,
low_cpu_mem_usage=True,
device_map="auto",
max_memory=max_memory,
model_basename=args.model_basename,
use_safetensors=args.use_safetensors,
trust_remote_code=args.trust_remote_code,
inject_fused_mlp=False,
inject_fused_attention=False,
disable_exllama=args.disable_exllama
)
else:
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
args.model_name,
low_cpu_mem_usage=True,
device_map="auto",
max_memory=max_memory,
torch_dtype=torch.float16,
trust_remote_code=args.trust_remote_code
)
ppl = Perplexity(model, tokenizer, args.dataset_path, args.dataset_name, args.split, args.text_column)
ppl.calculate_perplexity(args.n_ctx, args.n_batch)

View file

@ -1,169 +0,0 @@
import json
import os
from argparse import ArgumentParser
from functools import partial
import torch
from datasets import Dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer, get_linear_schedule_with_warmup
from auto_gptq import AutoGPTQForCausalLM, get_gptq_peft_model
from auto_gptq.utils.data_utils import make_data_block, collate_data
from auto_gptq.utils.peft_utils import GPTQAdaLoraConfig
from peft import TaskType
parser = ArgumentParser()
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--lr", type=float, default=3e-3)
parser.add_argument("--num_epochs", type=int, default=1)
parser.add_argument("--sample_max_length", type=int, default=1024, help="max length of sample")
parser.add_argument("--block_max_length", type=int, default=1024, help="max length of data block(bunch of samples)")
parser.add_argument("--tokenizer_name_or_path", type=str, default=None)
parser.add_argument("--use_fast_tokenizer", action="store_true")
args = parser.parse_args()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
model_name_or_path = args.model_name_or_path
tokenizer_name_or_path = args.tokenizer_name_or_path or model_name_or_path
lr = args.lr
num_epochs = args.num_epochs
# creating model
peft_config = GPTQAdaLoraConfig(
init_r=20,
target_r=16,
beta1=0.85,
beta2=0.85,
tinit=200,
tfinal=1000,
deltaT=10,
lora_alpha=32,
lora_dropout=0.1,
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=args.use_fast_tokenizer)
if not tokenizer.pad_token_id:
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoGPTQForCausalLM.from_quantized(
model_name_or_path,
use_triton=True,
warmup_triton=False,
trainable=True,
inject_fused_attention=True,
inject_fused_mlp=False
)
model.warmup_triton()
device = model.device
model = get_gptq_peft_model(model, peft_config=peft_config, auto_find_all_linears=True, train_mode=True)
model.print_trainable_parameters()
# loading dataset
WITH_INPUT_TEMPLATE = "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Output:\n"
WITHOUT_INPUT_TEMPLATE = "### Instruction:\n{instruction}\n\n### Output:\n"
def ds_refactor_fn(samples):
instruction_data = samples["instruction"]
input_data = samples["input"]
output_data = samples["output"]
new_samples = {"prompt": [], "output": []}
for instruction_txt, input_txt, output_txt in zip(instruction_data, input_data, output_data):
if input_txt:
prompt = WITH_INPUT_TEMPLATE.format(instruction=instruction_txt, input=input_txt)
else:
prompt = WITHOUT_INPUT_TEMPLATE.format(instruction=instruction_txt)
new_samples["prompt"].append(prompt)
new_samples["output"].append(output_txt)
return new_samples
ds = Dataset.from_generator(
lambda: json.load(open("../quantization/dataset/alpaca_data_cleaned.json", "r", encoding="utf-8"))
)
ds = ds.map(
make_data_block,
batched=True,
batch_size=len(ds),
num_proc=1,
remove_columns=ds.column_names,
keep_in_memory=True,
load_from_cache_file=False,
fn_kwargs={
"prompt_col_name": "prompt",
"label_col_name": "output",
"tokenizer": tokenizer,
"preprocess_fn": ds_refactor_fn,
"sample_max_len": args.sample_max_length,
"block_max_len": args.block_max_length,
"add_eos_token": True,
"truncate_prompt": False,
"merge_prompt_label": True
}
)
ds = ds.train_test_split(test_size=len(ds) // 10)
train_ds, eval_ds = ds["train"], ds["test"]
collate_fn = partial(collate_data, pad_token_id=tokenizer.pad_token_id)
train_dataloader = DataLoader(train_ds, batch_size=1, shuffle=True, collate_fn=partial(collate_fn))
eval_dataloader = DataLoader(eval_ds, batch_size=1, shuffle=False, collate_fn=collate_fn)
# optimizer and lr scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=(len(train_dataloader) * num_epochs),
)
model.base_model.peft_config["default"].total_step = len(train_dataloader) * num_epochs
# training and evaluation
with torch.cuda.amp.autocast():
global_step = 0
for epoch in range(num_epochs):
model.train()
total_loss = 0
progress_bar = tqdm(train_dataloader)
for step, batch in enumerate(progress_bar):
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
total_loss += loss.detach().float()
loss.backward()
optimizer.step()
lr_scheduler.step()
# Update the importance of low-rank matrices
# and allocate the budget accordingly.
model.base_model.update_and_allocate(global_step)
optimizer.zero_grad()
global_step += 1
progress_bar.set_postfix(loss=loss.item())
model.eval()
eval_loss = 0
eval_preds = []
for step, batch in enumerate(tqdm(eval_dataloader)):
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
eval_loss += loss.detach().float()
eval_preds.extend(
tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)
)
eval_epoch_loss = eval_loss / len(eval_dataloader)
eval_ppl = torch.exp(eval_epoch_loss)
train_epoch_loss = total_loss / len(train_dataloader)
train_ppl = torch.exp(train_epoch_loss)
print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")
model.save_pretrained(os.path.join(model_name_or_path, f"gptq_{peft_config.peft_type.value}_adapter"))

View file

@ -1,158 +0,0 @@
import json
import os
from argparse import ArgumentParser
from functools import partial
import torch
from datasets import Dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer, get_linear_schedule_with_warmup
from auto_gptq import AutoGPTQForCausalLM, get_gptq_peft_model
from auto_gptq.utils.data_utils import make_data_block, collate_data
from peft import TaskType, AdaptionPromptConfig
parser = ArgumentParser()
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--adapter_len", type=int, default=10)
parser.add_argument("--adapter_layers", type=int, default=30)
parser.add_argument("--lr", type=float, default=3e-3)
parser.add_argument("--num_epochs", type=int, default=1)
parser.add_argument("--sample_max_length", type=int, default=1024, help="max length of sample")
parser.add_argument("--block_max_length", type=int, default=1024, help="max length of data block(bunch of samples)")
parser.add_argument("--tokenizer_name_or_path", type=str, default=None)
parser.add_argument("--use_fast_tokenizer", action="store_true")
args = parser.parse_args()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
model_name_or_path = args.model_name_or_path
tokenizer_name_or_path = args.tokenizer_name_or_path or model_name_or_path
lr = args.lr
num_epochs = args.num_epochs
# creating model
peft_config = AdaptionPromptConfig(
adapter_len=args.adapter_len,
adapter_layers=args.adapter_layers,
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=args.use_fast_tokenizer)
if not tokenizer.pad_token_id:
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoGPTQForCausalLM.from_quantized(
model_name_or_path,
use_triton=True,
warmup_triton=False,
trainable=True,
inject_fused_attention=False,
inject_fused_mlp=False
)
model.warmup_triton()
device = model.device
model = get_gptq_peft_model(model, peft_config=peft_config, auto_find_all_linears=True, train_mode=True)
model.print_trainable_parameters()
# loading dataset
WITH_INPUT_TEMPLATE = "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Output:\n"
WITHOUT_INPUT_TEMPLATE = "### Instruction:\n{instruction}\n\n### Output:\n"
def ds_refactor_fn(samples):
instruction_data = samples["instruction"]
input_data = samples["input"]
output_data = samples["output"]
new_samples = {"prompt": [], "output": []}
for instruction_txt, input_txt, output_txt in zip(instruction_data, input_data, output_data):
if input_txt:
prompt = WITH_INPUT_TEMPLATE.format(instruction=instruction_txt, input=input_txt)
else:
prompt = WITHOUT_INPUT_TEMPLATE.format(instruction=instruction_txt)
new_samples["prompt"].append(prompt)
new_samples["output"].append(output_txt)
return new_samples
ds = Dataset.from_generator(
lambda: json.load(open("../quantization/dataset/alpaca_data_cleaned.json", "r", encoding="utf-8"))
)
ds = ds.map(
make_data_block,
batched=True,
batch_size=len(ds),
num_proc=1,
remove_columns=ds.column_names,
keep_in_memory=True,
load_from_cache_file=False,
fn_kwargs={
"prompt_col_name": "prompt",
"label_col_name": "output",
"tokenizer": tokenizer,
"preprocess_fn": ds_refactor_fn,
"sample_max_len": args.sample_max_length,
"block_max_len": args.block_max_length,
"add_eos_token": True,
"truncate_prompt": False,
"merge_prompt_label": True
}
)
ds = ds.train_test_split(test_size=len(ds) // 10)
train_ds, eval_ds = ds["train"], ds["test"]
collate_fn = partial(collate_data, pad_token_id=tokenizer.pad_token_id)
train_dataloader = DataLoader(train_ds, batch_size=1, shuffle=True, collate_fn=partial(collate_fn))
eval_dataloader = DataLoader(eval_ds, batch_size=1, shuffle=False, collate_fn=collate_fn)
# optimizer and lr scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=(len(train_dataloader) * num_epochs),
)
# training and evaluation
with torch.cuda.amp.autocast():
for epoch in range(num_epochs):
model.train()
total_loss = 0
progress_bar = tqdm(train_dataloader)
for step, batch in enumerate(progress_bar):
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
total_loss += loss.detach().float()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.set_postfix(loss=loss.item())
model.eval()
eval_loss = 0
eval_preds = []
for step, batch in enumerate(tqdm(eval_dataloader)):
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
eval_loss += loss.detach().float()
eval_preds.extend(
tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)
)
eval_epoch_loss = eval_loss / len(eval_dataloader)
eval_ppl = torch.exp(eval_epoch_loss)
train_epoch_loss = total_loss / len(train_dataloader)
train_ppl = torch.exp(train_epoch_loss)
print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")
model.save_pretrained(os.path.join(model_name_or_path, f"gptq_{peft_config.peft_type.value}_adapter"))

View file

@ -1,158 +0,0 @@
import json
import os
from argparse import ArgumentParser
from functools import partial
import torch
from datasets import Dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer, get_linear_schedule_with_warmup
from auto_gptq import AutoGPTQForCausalLM, get_gptq_peft_model
from auto_gptq.utils.data_utils import make_data_block, collate_data
from auto_gptq.utils.peft_utils import GPTQLoraConfig
from peft import TaskType
parser = ArgumentParser()
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--lr", type=float, default=3e-5)
parser.add_argument("--num_epochs", type=int, default=1)
parser.add_argument("--sample_max_length", type=int, default=1024, help="max length of sample")
parser.add_argument("--block_max_length", type=int, default=1024, help="max length of data block(bunch of samples)")
parser.add_argument("--tokenizer_name_or_path", type=str, default=None)
parser.add_argument("--use_fast_tokenizer", action="store_true")
args = parser.parse_args()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
model_name_or_path = args.model_name_or_path
tokenizer_name_or_path = args.tokenizer_name_or_path or model_name_or_path
lr = args.lr
num_epochs = args.num_epochs
# creating model
peft_config = GPTQLoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.1,
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=args.use_fast_tokenizer)
if not tokenizer.pad_token_id:
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoGPTQForCausalLM.from_quantized(
model_name_or_path,
use_triton=True,
warmup_triton=False,
trainable=True,
inject_fused_attention=True,
inject_fused_mlp=False
)
model.warmup_triton()
device = model.device
model = get_gptq_peft_model(model, peft_config=peft_config, auto_find_all_linears=True, train_mode=True)
model.print_trainable_parameters()
# loading dataset
WITH_INPUT_TEMPLATE = "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Output:\n"
WITHOUT_INPUT_TEMPLATE = "### Instruction:\n{instruction}\n\n### Output:\n"
def ds_refactor_fn(samples):
instruction_data = samples["instruction"]
input_data = samples["input"]
output_data = samples["output"]
new_samples = {"prompt": [], "output": []}
for instruction_txt, input_txt, output_txt in zip(instruction_data, input_data, output_data):
if input_txt:
prompt = WITH_INPUT_TEMPLATE.format(instruction=instruction_txt, input=input_txt)
else:
prompt = WITHOUT_INPUT_TEMPLATE.format(instruction=instruction_txt)
new_samples["prompt"].append(prompt)
new_samples["output"].append(output_txt)
return new_samples
ds = Dataset.from_generator(
lambda: json.load(open("../quantization/dataset/alpaca_data_cleaned.json", "r", encoding="utf-8"))
)
ds = ds.map(
make_data_block,
batched=True,
batch_size=len(ds),
num_proc=1,
remove_columns=ds.column_names,
keep_in_memory=True,
load_from_cache_file=False,
fn_kwargs={
"prompt_col_name": "prompt",
"label_col_name": "output",
"tokenizer": tokenizer,
"preprocess_fn": ds_refactor_fn,
"sample_max_len": args.sample_max_length,
"block_max_len": args.block_max_length,
"add_eos_token": True,
"truncate_prompt": False,
"merge_prompt_label": True
}
)
ds = ds.train_test_split(test_size=len(ds) // 10)
train_ds, eval_ds = ds["train"], ds["test"]
collate_fn = partial(collate_data, pad_token_id=tokenizer.pad_token_id)
train_dataloader = DataLoader(train_ds, batch_size=1, shuffle=True, collate_fn=partial(collate_fn))
eval_dataloader = DataLoader(eval_ds, batch_size=1, shuffle=False, collate_fn=collate_fn)
# optimizer and lr scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=(len(train_dataloader) * num_epochs),
)
# training and evaluation
with torch.cuda.amp.autocast():
for epoch in range(num_epochs):
model.train()
total_loss = 0
progress_bar = tqdm(train_dataloader)
for step, batch in enumerate(progress_bar):
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
total_loss += loss.detach().float()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.set_postfix(loss=loss.item())
model.eval()
eval_loss = 0
eval_preds = []
for step, batch in enumerate(tqdm(eval_dataloader)):
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
eval_loss += loss.detach().float()
eval_preds.extend(
tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)
)
eval_epoch_loss = eval_loss / len(eval_dataloader)
eval_ppl = torch.exp(eval_epoch_loss)
train_epoch_loss = total_loss / len(train_dataloader)
train_ppl = torch.exp(train_epoch_loss)
print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")
model.save_pretrained(os.path.join(model_name_or_path, f"gptq_{peft_config.peft_type.value}_adapter"))

View file

@ -0,0 +1,55 @@
from argparse import ArgumentParser
from auto_gptq import AutoGPTQForCausalLM
from transformers import AutoTokenizer
def main():
parser = ArgumentParser()
parser.add_argument("--quantized_model_dir", type=str, help="Directory that saves quantized model.")
parser.add_argument("--repo_id", type=str, help="The name of the repository you want to push to.")
parser.add_argument(
"--tokenizer_dir",
type=str,
default=None,
help="Directory that saves tokenizer, defaults to None, will not upload tokenizer if not specified."
)
parser.add_argument("--commit_message", type=str, default=None, help="Message to commit while pushing.")
parser.add_argument(
"--device",
type=str,
default="cpu",
choices=["cpu", "cuda"],
help="Which device to load the model."
)
parser.add_argument(
"--private",
action="store_true",
help="Whether or not the repository created should be private."
)
parser.add_argument(
"--use_temp_dir",
action="store_true",
help="Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub."
)
args = parser.parse_args()
push_to_hub_kwargs = {
"repo_id": args.repo_id,
"commit_message": args.commit_message,
"private": args.private,
"use_temp_dir": args.use_temp_dir
}
model = AutoGPTQForCausalLM.from_quantized(args.quantized_model_dir, device=args.device)
model.push_to_hub(**push_to_hub_kwargs)
model.config.push_to_hub(**push_to_hub_kwargs)
model.quantize_config.push_to_hub(**push_to_hub_kwargs)
if args.tokenizer_dir:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
tokenizer.push_to_hub(**push_to_hub_kwargs)
if __name__ == "__main__":
main()

View file

@ -7,6 +7,8 @@ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
pretrained_model_dir = "facebook/opt-125m" pretrained_model_dir = "facebook/opt-125m"
quantized_model_dir = "opt-125m-4bit-128g" quantized_model_dir = "opt-125m-4bit-128g"
# os.makedirs(quantized_model_dir, exist_ok=True)
def main(): def main():
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
@ -19,46 +21,29 @@ def main():
quantize_config = BaseQuantizeConfig( quantize_config = BaseQuantizeConfig(
bits=4, # quantize model to 4-bit bits=4, # quantize model to 4-bit
group_size=128, # it is recommended to set the value to 128 group_size=128, # it is recommended to set the value to 128
desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad
) )
# load un-quantized model, by default, the model will always be loaded into CPU memory # load un-quantized model, the model will always be force loaded into cpu
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config) model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask" # quantize model, the examples should be list of dict whose keys contains "input_ids" and "attention_mask"
model.quantize(examples) # with value under torch.LongTensor type.
model.quantize(examples, use_triton=False)
# save quantized model # save quantized model
model.save_quantized(quantized_model_dir) model.save_quantized(quantized_model_dir)
# push quantized model to Hugging Face Hub.
# to use use_auth_token=True, Login first via huggingface-cli login.
# or pass explcit token with: use_auth_token="hf_xxxxxxx"
# (uncomment the following three lines to enable this feature)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)
# alternatively you can save and push at the same time
# (uncomment the following three lines to enable this feature)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)
# save quantized model using safetensors # save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True) model.save_quantized(quantized_model_dir, use_safetensors=True)
# load quantized model to the first GPU # load quantized model, currently only support cpu or single gpu
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0") model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False)
# download quantized model from Hugging Face Hub and load to the first GPU
# model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)
# inference with model.generate # inference with model.generate
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0])) print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to("cuda:0"))[0]))
# or you can also use pipeline # or you can also use pipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer) pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer, device="cuda:0")
print(pipeline("auto-gptq is")[0]["generated_text"]) print(pipeline("auto-gptq is")[0]["generated_text"])

Some files were not shown because too many files have changed in this diff Show more