188 lines
No EOL
6.8 KiB
Python
188 lines
No EOL
6.8 KiB
Python
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2
|
|
|
|
from logging import getLogger
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import math
|
|
|
|
logger = getLogger(__name__)
|
|
|
|
try:
|
|
from exllamav2_kernels import make_q_matrix, gemm_half_q_half
|
|
except ImportError:
|
|
logger.error('exllamav2_kernels not installed.')
|
|
raise
|
|
|
|
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
|
|
none_tensor = torch.empty((1, 1), device="meta")
|
|
|
|
def _torch_device(idx):
|
|
if idx == -1: return "cpu"
|
|
return f"cuda:{idx}"
|
|
|
|
def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
|
|
"""Matrix multiplication, returns x @ q4"""
|
|
output_shape = x.shape[:-1] + (q4_width,)
|
|
x = x.view(-1, x.shape[-1])
|
|
output = torch.empty((x.shape[0], q4_width), dtype = torch.half, device = x.device)
|
|
gemm_half_q_half(x, q_handle, output, force_cuda)
|
|
return output.view(output_shape)
|
|
|
|
def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
|
|
"""
|
|
Create Q matrix
|
|
"""
|
|
# EXL2
|
|
# won't work as the moment because the tensors are not the same.
|
|
if "q_weight" in w:
|
|
w["q_scale_max"] /= 256
|
|
w["q_perm"] = w["q_perm"].short()
|
|
w["q_invperm"] = w["q_invperm"].short()
|
|
return make_q_matrix(w["q_weight"],
|
|
w["q_perm"],
|
|
w["q_invperm"],
|
|
w["q_scale"],
|
|
w["q_scale_max"],
|
|
w["q_groups"],
|
|
none_tensor,
|
|
none_tensor,
|
|
none_tensor,
|
|
temp_dq)
|
|
# GPTQ
|
|
elif "qweight" in w:
|
|
if w["scales"].dtype == torch.float:
|
|
w["scales"] = w["scales"].half()
|
|
|
|
# GPTQ with g_idx (act_order)
|
|
if "g_idx" in w and not (w["g_idx"] == 0).all().item():
|
|
w["q_perm"] = torch.empty((w["qweight"].shape[0] * 8,), dtype = torch.short, device = w["qweight"].device)
|
|
w["q_invperm"] = torch.empty_like(w["q_perm"])
|
|
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
|
|
return make_q_matrix(w["qweight"],
|
|
w["q_perm"],
|
|
w["q_invperm"],
|
|
none_tensor,
|
|
none_tensor,
|
|
none_tensor,
|
|
w["qzeros"],
|
|
w["scales"],
|
|
w["g_idx"].cpu(),
|
|
temp_dq)
|
|
# GPTQ without g_idx
|
|
else:
|
|
return make_q_matrix(w["qweight"],
|
|
none_tensor,
|
|
none_tensor,
|
|
none_tensor,
|
|
none_tensor,
|
|
none_tensor,
|
|
w["qzeros"],
|
|
w["scales"],
|
|
none_tensor,
|
|
temp_dq)
|
|
|
|
class QuantLinear(nn.Module):
|
|
QUANT_TYPE = "exllamav2"
|
|
|
|
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
|
|
|
|
def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
|
|
super().__init__()
|
|
if bits != 4:
|
|
raise ValueError(
|
|
f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.")
|
|
if trainable:
|
|
raise NotImplementedError("Exllamav2 kernel does not support training.")
|
|
|
|
self.q_handle = None
|
|
self.q_tensors = None
|
|
self.padding = - outfeatures % 32
|
|
|
|
self.infeatures = infeatures
|
|
self.outfeatures = outfeatures + self.padding
|
|
self.bits = bits
|
|
self.group_size = group_size if group_size != -1 else infeatures
|
|
self.trainable = trainable
|
|
self.maxq = 2 ** self.bits - 1
|
|
|
|
assert infeatures % 32 == 0
|
|
assert infeatures % self.group_size == 0
|
|
assert outfeatures % 32 == 0
|
|
|
|
# I need to register the tensors, otherwise, we won't be able to load them easily using transformers ...
|
|
self.register_buffer(
|
|
'qweight',
|
|
torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)
|
|
)
|
|
self.register_buffer(
|
|
'qzeros',
|
|
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32)
|
|
)
|
|
self.register_buffer(
|
|
'scales',
|
|
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16)
|
|
)
|
|
self.register_buffer(
|
|
'g_idx',
|
|
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32)
|
|
)
|
|
|
|
if bias:
|
|
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
|
|
else:
|
|
self.bias = None
|
|
|
|
def post_init(self, temp_dq):
|
|
assert self.qweight.device.type == "cuda"
|
|
assert self.qweight.device.index is not None
|
|
self.q_tensors = {
|
|
"qweight":self.qweight,
|
|
"qzeros":self.qzeros,
|
|
"scales":self.scales,
|
|
"g_idx":self.g_idx
|
|
}
|
|
temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
|
|
self.q_handle = ext_make_q_matrix(
|
|
self.q_tensors, temp_dq
|
|
)
|
|
|
|
def forward(self, x, force_cuda = False):
|
|
output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)
|
|
|
|
if self.bias is not None:
|
|
output.add_(self.bias)
|
|
return output
|
|
|
|
def temp_dq_size(self):
|
|
return self.infeatures * self.outfeatures * 2 + 128
|
|
|
|
def temp_fwd_size(self, max_input_len, max_batch_size):
|
|
return self.outfeatures * max_input_len * max_batch_size * 4 + 128
|
|
|
|
def scratch_space_fixed(self, max_input_len=2048, max_batch_size=8):
|
|
return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)
|
|
|
|
|
|
class ExLlamaV2DeviceTensors:
|
|
|
|
device_idx: int
|
|
scratch_bytes: int
|
|
scratch_idx: int
|
|
scratch: torch.tensor = None
|
|
|
|
def __init__(self, device_idx, scratch_bytes):
|
|
self.device_idx = device_idx
|
|
self.scratch_bytes = scratch_bytes
|
|
|
|
def prepare(self):
|
|
self.scratch = torch.empty((self.scratch_bytes // 2,), dtype = torch.half, device = _torch_device(self.device_idx))
|
|
|
|
def get_scratch_slice(self, size_bytes):
|
|
|
|
if self.scratch is None: self.prepare()
|
|
|
|
size_bytes = ((size_bytes + 127) // 128) * 128
|
|
size_half = size_bytes // 2
|
|
scratch_slice = self.scratch.narrow(0, 0, size_half)
|
|
return scratch_slice |