AutoGPTQ/auto_gptq/nn_modules/qlinear/qlinear_exllamav2.py
2023-09-25 16:51:18 +00:00

188 lines
No EOL
6.8 KiB
Python

# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2
from logging import getLogger
import torch
import torch.nn as nn
import math
logger = getLogger(__name__)
try:
from exllamav2_kernels import make_q_matrix, gemm_half_q_half
except ImportError:
logger.error('exllamav2_kernels not installed.')
raise
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")
def _torch_device(idx):
if idx == -1: return "cpu"
return f"cuda:{idx}"
def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
"""Matrix multiplication, returns x @ q4"""
output_shape = x.shape[:-1] + (q4_width,)
x = x.view(-1, x.shape[-1])
output = torch.empty((x.shape[0], q4_width), dtype = torch.half, device = x.device)
gemm_half_q_half(x, q_handle, output, force_cuda)
return output.view(output_shape)
def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
"""
Create Q matrix
"""
# EXL2
# won't work as the moment because the tensors are not the same.
if "q_weight" in w:
w["q_scale_max"] /= 256
w["q_perm"] = w["q_perm"].short()
w["q_invperm"] = w["q_invperm"].short()
return make_q_matrix(w["q_weight"],
w["q_perm"],
w["q_invperm"],
w["q_scale"],
w["q_scale_max"],
w["q_groups"],
none_tensor,
none_tensor,
none_tensor,
temp_dq)
# GPTQ
elif "qweight" in w:
if w["scales"].dtype == torch.float:
w["scales"] = w["scales"].half()
# GPTQ with g_idx (act_order)
if "g_idx" in w and not (w["g_idx"] == 0).all().item():
w["q_perm"] = torch.empty((w["qweight"].shape[0] * 8,), dtype = torch.short, device = w["qweight"].device)
w["q_invperm"] = torch.empty_like(w["q_perm"])
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
return make_q_matrix(w["qweight"],
w["q_perm"],
w["q_invperm"],
none_tensor,
none_tensor,
none_tensor,
w["qzeros"],
w["scales"],
w["g_idx"].cpu(),
temp_dq)
# GPTQ without g_idx
else:
return make_q_matrix(w["qweight"],
none_tensor,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
w["qzeros"],
w["scales"],
none_tensor,
temp_dq)
class QuantLinear(nn.Module):
QUANT_TYPE = "exllamav2"
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
super().__init__()
if bits != 4:
raise ValueError(
f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.")
if trainable:
raise NotImplementedError("Exllamav2 kernel does not support training.")
self.q_handle = None
self.q_tensors = None
self.padding = - outfeatures % 32
self.infeatures = infeatures
self.outfeatures = outfeatures + self.padding
self.bits = bits
self.group_size = group_size if group_size != -1 else infeatures
self.trainable = trainable
self.maxq = 2 ** self.bits - 1
assert infeatures % 32 == 0
assert infeatures % self.group_size == 0
assert outfeatures % 32 == 0
# I need to register the tensors, otherwise, we won't be able to load them easily using transformers ...
self.register_buffer(
'qweight',
torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)
)
self.register_buffer(
'qzeros',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32)
)
self.register_buffer(
'scales',
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16)
)
self.register_buffer(
'g_idx',
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32)
)
if bias:
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
else:
self.bias = None
def post_init(self, temp_dq):
assert self.qweight.device.type == "cuda"
assert self.qweight.device.index is not None
self.q_tensors = {
"qweight":self.qweight,
"qzeros":self.qzeros,
"scales":self.scales,
"g_idx":self.g_idx
}
temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
self.q_handle = ext_make_q_matrix(
self.q_tensors, temp_dq
)
def forward(self, x, force_cuda = False):
output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)
if self.bias is not None:
output.add_(self.bias)
return output
def temp_dq_size(self):
return self.infeatures * self.outfeatures * 2 + 128
def temp_fwd_size(self, max_input_len, max_batch_size):
return self.outfeatures * max_input_len * max_batch_size * 4 + 128
def scratch_space_fixed(self, max_input_len=2048, max_batch_size=8):
return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)
class ExLlamaV2DeviceTensors:
device_idx: int
scratch_bytes: int
scratch_idx: int
scratch: torch.tensor = None
def __init__(self, device_idx, scratch_bytes):
self.device_idx = device_idx
self.scratch_bytes = scratch_bytes
def prepare(self):
self.scratch = torch.empty((self.scratch_bytes // 2,), dtype = torch.half, device = _torch_device(self.device_idx))
def get_scratch_slice(self, size_bytes):
if self.scratch is None: self.prepare()
size_bytes = ((size_bytes + 127) // 128) * 128
size_half = size_bytes // 2
scratch_slice = self.scratch.narrow(0, 0, size_half)
return scratch_slice