text-generation-webui-mirror/extensions/openai/completions.py

518 lines
19 KiB
Python

import copy
import time
import json
from collections import deque
import tiktoken
from extensions.openai.errors import InvalidRequestError
from extensions.openai.utils import debug_msg, getToolCallId, parseToolCall
from extensions.openai.typing import ToolDefinition
from pydantic import ValidationError
from modules import shared
from modules.chat import (
generate_chat_prompt,
generate_chat_reply,
load_character_memoized,
load_instruction_template_memoized
)
from modules.presets import load_preset_memoized
from modules.text_generation import decode, encode, generate_reply
def convert_logprobs_to_tiktoken(model, logprobs):
# more problems than it's worth.
# try:
# encoder = tiktoken.encoding_for_model(model)
# # just pick the first one if it encodes to multiple tokens... 99.9% not required and maybe worse overall.
# return dict([(encoder.decode([encoder.encode(token)[0]]), prob) for token, prob in logprobs.items()])
# except KeyError:
# # assume native tokens if we can't find the tokenizer
# return logprobs
return logprobs
def process_parameters(body, is_legacy=False):
generate_params = body
max_tokens_str = 'length' if is_legacy else 'max_tokens'
generate_params['max_new_tokens'] = body.pop(max_tokens_str)
if generate_params['truncation_length'] == 0:
generate_params['truncation_length'] = shared.settings['truncation_length']
if generate_params['temperature'] == 0:
generate_params['do_sample'] = False
generate_params['top_k'] = 1
if body['preset'] is not None:
preset = load_preset_memoized(body['preset'])
generate_params.update(preset)
generate_params['custom_stopping_strings'] = []
if 'stop' in body: # str or array, max len 4 (ignored)
if isinstance(body['stop'], str):
generate_params['custom_stopping_strings'] = [body['stop']]
elif isinstance(body['stop'], list):
generate_params['custom_stopping_strings'] = body['stop']
if shared.args.loader != 'llama.cpp':
from transformers import LogitsProcessorList
from modules.transformers_loader import (
LogitsBiasProcessor,
LogprobProcessor
)
logits_processor = []
logit_bias = body.get('logit_bias', None)
if logit_bias: # {str: float, ...}
logits_processor = [LogitsBiasProcessor(logit_bias)]
logprobs = None # coming to chat eventually
if 'logprobs' in body:
logprobs = body.get('logprobs', 0) # maybe cap at topk? don't clamp 0-5.
generate_params['logprob_proc'] = LogprobProcessor(logprobs)
logits_processor.extend([generate_params['logprob_proc']])
else:
logprobs = None
if logits_processor: # requires logits_processor support
generate_params['logits_processor'] = LogitsProcessorList(logits_processor)
return generate_params
def convert_history(history):
'''
Chat histories in this program are in the format [message, reply].
This function converts OpenAI histories to that format.
'''
chat_dialogue = []
current_message = ""
current_reply = ""
user_input = ""
user_input_last = True
system_message = ""
for entry in history:
content = entry["content"]
role = entry["role"]
if role == "user":
user_input = content
user_input_last = True
if current_message:
chat_dialogue.append([current_message, '', ''])
current_message = ""
current_message = content
elif role == "assistant":
if "tool_calls" in entry and isinstance(entry["tool_calls"], list) and len(entry["tool_calls"]) > 0 and content.strip() == "":
continue # skip tool calls
current_reply = content
user_input_last = False
if current_message:
chat_dialogue.append([current_message, current_reply, ''])
current_message = ""
current_reply = ""
else:
chat_dialogue.append(['', current_reply, ''])
elif role == "tool":
user_input_last = False
chat_dialogue.append(['', '', content])
elif role == "system":
system_message += f"\n{content}" if system_message else content
if not user_input_last:
user_input = ""
return user_input, system_message, {'internal': chat_dialogue, 'visible': copy.deepcopy(chat_dialogue)}
def chat_completions_common(body: dict, is_legacy: bool = False, stream=False, prompt_only=False) -> dict:
if body.get('functions', []):
raise InvalidRequestError(message="functions is not supported.", param='functions')
if body.get('function_call', ''):
raise InvalidRequestError(message="function_call is not supported.", param='function_call')
if 'messages' not in body:
raise InvalidRequestError(message="messages is required", param='messages')
tools = None
if 'tools' in body and body['tools'] is not None and isinstance(body['tools'], list) and len(body['tools']) > 0:
tools = validateTools(body['tools']) # raises InvalidRequestError if validation fails
messages = body['messages']
for m in messages:
if 'role' not in m:
raise InvalidRequestError(message="messages: missing role", param='messages')
elif m['role'] == 'function':
raise InvalidRequestError(message="role: function is not supported.", param='messages')
if 'content' not in m and "image_url" not in m:
raise InvalidRequestError(message="messages: missing content", param='messages')
# Chat Completions
object_type = 'chat.completion' if not stream else 'chat.completion.chunk'
created_time = int(time.time())
cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000))
resp_list = 'data' if is_legacy else 'choices'
# generation parameters
generate_params = process_parameters(body, is_legacy=is_legacy)
continue_ = body['continue_']
# Instruction template
if body['instruction_template_str']:
instruction_template_str = body['instruction_template_str']
elif body['instruction_template']:
instruction_template = body['instruction_template']
instruction_template = "Alpaca" if instruction_template == "None" else instruction_template
instruction_template_str = load_instruction_template_memoized(instruction_template)
else:
instruction_template_str = shared.settings['instruction_template_str']
chat_template_str = body['chat_template_str'] or shared.default_settings['chat_template_str']
chat_instruct_command = body['chat_instruct_command'] or shared.default_settings['chat-instruct_command']
# Chat character
character = body['character'] or shared.default_settings['character']
character = "Assistant" if character == "None" else character
name1 = body['user_name'] or shared.default_settings['name1']
name1, name2, _, greeting, context = load_character_memoized(character, name1, '')
name2 = body['bot_name'] or name2
context = body['context'] or context
greeting = body['greeting'] or greeting
user_bio = body['user_bio'] or ''
# History
user_input, custom_system_message, history = convert_history(messages)
generate_params.update({
'mode': body['mode'],
'name1': name1,
'name2': name2,
'context': context,
'greeting': greeting,
'user_bio': user_bio,
'instruction_template_str': instruction_template_str,
'custom_system_message': custom_system_message,
'chat_template_str': chat_template_str,
'chat-instruct_command': chat_instruct_command,
'tools': tools,
'history': history,
'stream': stream
})
max_tokens = generate_params['max_new_tokens']
if max_tokens in [None, 0]:
generate_params['max_new_tokens'] = 512
generate_params['auto_max_new_tokens'] = True
requested_model = generate_params.pop('model')
logprob_proc = generate_params.pop('logprob_proc', None)
def chat_streaming_chunk(content, chunk_tool_calls=None):
# begin streaming
chunk = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
"delta": {'role': 'assistant', 'content': content, 'tool_calls': chunk_tool_calls},
}],
}
if logprob_proc: # not official for chat yet
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
# else:
# chunk[resp_list][0]["logprobs"] = None
return chunk
# generate reply #######################################
prompt = generate_chat_prompt(user_input, generate_params, _continue=continue_)
if prompt_only:
yield {'prompt': prompt}
return
if stream:
yield chat_streaming_chunk('')
generator = generate_chat_reply(
user_input, generate_params, regenerate=False, _continue=continue_, loading_message=False)
answer = ''
seen_content = ''
tool_calls = []
end_last_tool_call = 0
supported_tools = [x["function"]["name"] for x in tools] if tools is not None else None
for a in generator:
answer = a['internal'][-1][1]
if supported_tools is not None:
tool_call = parseToolCall(answer[end_last_tool_call:], supported_tools) if len(answer) > 0 else []
if len(tool_call) > 0:
for tc in tool_call:
tc["id"] = getToolCallId()
tc["index"] = str(len(tool_calls))
tc["function"]["arguments"] = json.dumps(tc["function"]["arguments"])
tool_calls.append(tc)
end_last_tool_call = len(answer)
if stream:
len_seen = len(seen_content)
new_content = answer[len_seen:]
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet.
continue
chunk = chat_streaming_chunk(new_content)
seen_content = answer
yield chunk
# stop generation if tool_calls were generated previously
if len(tool_calls) > 0:
break
token_count = len(encode(prompt)[0])
completion_token_count = len(encode(answer)[0])
stop_reason = "stop"
if len(tool_calls) > 0:
stop_reason = "tool_calls"
if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= generate_params['max_new_tokens']:
stop_reason = "length"
if stream:
chunk = chat_streaming_chunk('', tool_calls)
chunk[resp_list][0]['finish_reason'] = stop_reason
chunk['usage'] = {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
yield chunk
else:
resp = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": stop_reason,
"message": {"role": "assistant", "content": answer},
"tool_calls": tool_calls
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
if logprob_proc: # not official for chat yet
top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
# else:
# resp[resp_list][0]["logprobs"] = None
yield resp
def completions_common(body: dict, is_legacy: bool = False, stream=False):
object_type = 'text_completion.chunk' if stream else 'text_completion'
created_time = int(time.time())
cmpl_id = "conv-%d" % (int(time.time() * 1000000000))
resp_list = 'data' if is_legacy else 'choices'
prompt_str = 'context' if is_legacy else 'prompt'
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
if prompt_str not in body:
raise InvalidRequestError("Missing required input", param=prompt_str)
# common params
generate_params = process_parameters(body, is_legacy=is_legacy)
max_tokens = generate_params['max_new_tokens']
generate_params['stream'] = stream
requested_model = generate_params.pop('model')
logprob_proc = generate_params.pop('logprob_proc', None)
suffix = body['suffix'] if body['suffix'] else ''
echo = body['echo']
if not stream:
prompt_arg = body[prompt_str]
if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)):
prompt_arg = [prompt_arg]
resp_list_data = []
total_completion_token_count = 0
total_prompt_token_count = 0
for idx, prompt in enumerate(prompt_arg, start=0):
if isinstance(prompt[0], int):
# token lists
if requested_model == shared.model_name:
prompt = decode(prompt)[0]
else:
try:
encoder = tiktoken.encoding_for_model(requested_model)
prompt = encoder.decode(prompt)
except KeyError:
prompt = decode(prompt)[0]
prefix = prompt if echo else ''
# generate reply #######################################
debug_msg({'prompt': prompt, 'generate_params': generate_params})
generator = generate_reply(prompt, generate_params, is_chat=False)
answer = ''
for a in generator:
answer = a
token_count = len(encode(prompt)[0])
total_prompt_token_count += token_count
completion_token_count = len(encode(answer)[0])
total_completion_token_count += completion_token_count
stop_reason = "stop"
if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens:
stop_reason = "length"
respi = {
"index": idx,
"finish_reason": stop_reason,
"text": prefix + answer + suffix,
"logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None,
}
resp_list_data.extend([respi])
resp = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name,
resp_list: resp_list_data,
"usage": {
"prompt_tokens": total_prompt_token_count,
"completion_tokens": total_completion_token_count,
"total_tokens": total_prompt_token_count + total_completion_token_count
}
}
yield resp
else:
prompt = body[prompt_str]
if isinstance(prompt, list):
if prompt and isinstance(prompt[0], int):
try:
encoder = tiktoken.encoding_for_model(requested_model)
prompt = encoder.decode(prompt)
except KeyError:
prompt = decode(prompt)[0]
else:
raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str)
prefix = prompt if echo else ''
token_count = len(encode(prompt)[0])
def text_streaming_chunk(content):
# begin streaming
chunk = {
"id": cmpl_id,
"object": object_type,
"created": created_time,
"model": shared.model_name,
resp_list: [{
"index": 0,
"finish_reason": None,
"text": content,
"logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None,
}],
}
return chunk
yield text_streaming_chunk(prefix)
# generate reply #######################################
debug_msg({'prompt': prompt, 'generate_params': generate_params})
generator = generate_reply(prompt, generate_params, is_chat=False)
answer = ''
seen_content = ''
completion_token_count = 0
for a in generator:
answer = a
len_seen = len(seen_content)
new_content = answer[len_seen:]
if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet.
continue
seen_content = answer
chunk = text_streaming_chunk(new_content)
yield chunk
completion_token_count = len(encode(answer)[0])
stop_reason = "stop"
if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens:
stop_reason = "length"
chunk = text_streaming_chunk(suffix)
chunk[resp_list][0]["finish_reason"] = stop_reason
chunk["usage"] = {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
yield chunk
def chat_completions(body: dict, is_legacy: bool = False) -> dict:
generator = chat_completions_common(body, is_legacy, stream=False)
return deque(generator, maxlen=1).pop()
def stream_chat_completions(body: dict, is_legacy: bool = False):
for resp in chat_completions_common(body, is_legacy, stream=True):
yield resp
def completions(body: dict, is_legacy: bool = False) -> dict:
generator = completions_common(body, is_legacy, stream=False)
return deque(generator, maxlen=1).pop()
def stream_completions(body: dict, is_legacy: bool = False):
for resp in completions_common(body, is_legacy, stream=True):
yield resp
def validateTools(tools: list[dict]):
# Validate each tool definition in the JSON array
valid_tools = None
for idx in range(len(tools)):
tool = tools[idx]
try:
tool_definition = ToolDefinition(**tool)
if valid_tools is None:
valid_tools = []
valid_tools.append(tool)
except ValidationError:
raise InvalidRequestError(message=f"Invalid tool specification at index {idx}.", param='tools')
return valid_tools