mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-06-07 14:17:09 -04:00
247 lines
9.7 KiB
Python
247 lines
9.7 KiB
Python
import os
|
|
import traceback
|
|
from pathlib import Path
|
|
from typing import Any, Dict, Optional, Union
|
|
|
|
import torch
|
|
from exllamav3 import Cache, Config, Model
|
|
from exllamav3.cache import CacheLayer_fp16, CacheLayer_quant
|
|
from torch.nn import CrossEntropyLoss
|
|
from transformers import (
|
|
GenerationConfig,
|
|
GenerationMixin,
|
|
PretrainedConfig,
|
|
PreTrainedModel
|
|
)
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
|
|
from modules import shared
|
|
from modules.logging_colors import logger
|
|
|
|
try:
|
|
import flash_attn
|
|
except Exception:
|
|
logger.warning('Failed to load flash-attention due to the following error:\n')
|
|
traceback.print_exc()
|
|
|
|
|
|
class Exllamav3HF(PreTrainedModel, GenerationMixin):
|
|
def __init__(self, model_dir):
|
|
super().__init__(PretrainedConfig())
|
|
self.generation_config = GenerationConfig()
|
|
|
|
config = Config.from_directory(model_dir)
|
|
self.ex_model = Model.from_config(config)
|
|
|
|
# Calculate the closest multiple of 256 at or above the chosen value
|
|
max_tokens = shared.args.ctx_size
|
|
if max_tokens % 256 != 0:
|
|
adjusted_tokens = ((max_tokens // 256) + 1) * 256
|
|
logger.warning(f"max_num_tokens must be a multiple of 256. Adjusting from {max_tokens} to {adjusted_tokens}")
|
|
max_tokens = adjusted_tokens
|
|
|
|
# Parse cache type
|
|
cache_type = shared.args.cache_type.lower()
|
|
cache_kwargs = {}
|
|
if cache_type == 'fp16':
|
|
layer_type = CacheLayer_fp16
|
|
elif cache_type.startswith('q'):
|
|
layer_type = CacheLayer_quant
|
|
if '_' in cache_type:
|
|
# Different bits for k and v (e.g., q4_q8)
|
|
k_part, v_part = cache_type.split('_')
|
|
k_bits = int(k_part[1:])
|
|
v_bits = int(v_part[1:])
|
|
else:
|
|
# Same bits for k and v (e.g., q4)
|
|
k_bits = v_bits = int(cache_type[1:])
|
|
|
|
# Validate bit ranges
|
|
if not (2 <= k_bits <= 8 and 2 <= v_bits <= 8):
|
|
logger.warning(f"Invalid quantization bits: k_bits={k_bits}, v_bits={v_bits}. Must be between 2 and 8. Falling back to fp16.")
|
|
layer_type = CacheLayer_fp16
|
|
else:
|
|
cache_kwargs = {'k_bits': k_bits, 'v_bits': v_bits}
|
|
else:
|
|
logger.warning(f"Unrecognized cache type: {cache_type}. Falling back to fp16.")
|
|
layer_type = CacheLayer_fp16
|
|
|
|
self.ex_cache = Cache(self.ex_model, max_num_tokens=max_tokens, layer_type=layer_type, **cache_kwargs)
|
|
|
|
# Create load parameters dictionary
|
|
load_params = {'progressbar': True}
|
|
if shared.args.gpu_split:
|
|
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")]
|
|
load_params['use_per_device'] = split
|
|
|
|
self.ex_model.load(**load_params)
|
|
self.past_seq = None
|
|
self.max_tokens = max_tokens
|
|
|
|
def _validate_model_class(self):
|
|
pass
|
|
|
|
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
|
|
pass
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
|
return {'input_ids': input_ids, **kwargs}
|
|
|
|
@property
|
|
def device(self) -> torch.device:
|
|
return torch.device(0)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
use_cache = kwargs.get('use_cache', True)
|
|
labels = kwargs.get('labels', None)
|
|
past_key_values = kwargs.get('past_key_values', None)
|
|
|
|
if len(args) > 0:
|
|
if not shared.args.cfg_cache:
|
|
logger.error("Please enable the cfg-cache option to use CFG with ExLlamav3_HF.")
|
|
return
|
|
|
|
input_ids = args[0]
|
|
is_negative = True
|
|
past_seq = self.past_seq_negative
|
|
ex_cache = self.ex_cache_negative
|
|
else:
|
|
input_ids = kwargs['input_ids']
|
|
is_negative = False
|
|
past_seq = self.past_seq
|
|
ex_cache = self.ex_cache
|
|
|
|
seq = input_ids[0].tolist()
|
|
if is_negative and past_key_values is not None:
|
|
seq = past_key_values + seq
|
|
|
|
seq_tensor = torch.tensor(seq)
|
|
reset = True
|
|
|
|
# Maximum number of tokens to process in a single forward pass
|
|
max_chunk_size = 256
|
|
|
|
# Make the forward call
|
|
if labels is None:
|
|
if past_seq is not None:
|
|
min_length = min(past_seq.shape[0], seq_tensor.shape[0])
|
|
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length]))
|
|
if len(indices) > 0:
|
|
longest_prefix = indices[0].item()
|
|
else:
|
|
longest_prefix = min_length
|
|
|
|
if longest_prefix > 0:
|
|
reset = False
|
|
current_len = longest_prefix
|
|
remaining_tokens = len(seq_tensor) - longest_prefix - 1
|
|
|
|
if remaining_tokens > 0:
|
|
# Process tokens from longest_prefix to second-to-last token
|
|
tokens_to_process = seq_tensor[longest_prefix:-1]
|
|
|
|
# Process in chunks if the number of tokens is large
|
|
for i in range(0, tokens_to_process.shape[0], max_chunk_size):
|
|
chunk = tokens_to_process[i:i + max_chunk_size]
|
|
self.ex_model.forward(
|
|
input_ids=chunk.view(1, -1),
|
|
params={
|
|
"attn_mode": "flash_attn",
|
|
"cache": ex_cache,
|
|
"past_len": longest_prefix + i,
|
|
"batch_shape": (1, self.max_tokens),
|
|
"reconstruct": False # Force memory-efficient path
|
|
}
|
|
)
|
|
|
|
current_len = longest_prefix + remaining_tokens
|
|
|
|
if reset:
|
|
if len(seq_tensor) > 1:
|
|
# Process all tokens except the last one
|
|
tokens_to_process = seq_tensor[:-1]
|
|
|
|
# Process in chunks if the number of tokens is large
|
|
current_len = 0
|
|
for i in range(0, tokens_to_process.shape[0], max_chunk_size):
|
|
chunk = tokens_to_process[i:i + max_chunk_size]
|
|
self.ex_model.forward(
|
|
input_ids=chunk.view(1, -1),
|
|
params={
|
|
"attn_mode": "flash_attn",
|
|
"cache": ex_cache,
|
|
"past_len": current_len,
|
|
"batch_shape": (1, self.max_tokens),
|
|
"reconstruct": False # Force memory-efficient path
|
|
}
|
|
)
|
|
current_len += chunk.shape[0]
|
|
else:
|
|
current_len = 0
|
|
|
|
# Process the last token and get logits
|
|
logits = self.ex_model.forward(
|
|
input_ids=seq_tensor[-1:].view(1, -1),
|
|
params={
|
|
"attn_mode": "flash_attn",
|
|
"cache": ex_cache,
|
|
"past_len": current_len,
|
|
"batch_shape": (1, self.max_tokens),
|
|
"reconstruct": False # Force memory-efficient path
|
|
}
|
|
).to(input_ids.device).float()
|
|
else:
|
|
# When processing with labels, handle as a complete sequence
|
|
# Process in chunks if the number of tokens is large
|
|
tokens_to_process = seq_tensor
|
|
all_logits = None
|
|
|
|
for i in range(0, tokens_to_process.shape[0], max_chunk_size):
|
|
chunk = tokens_to_process[i:i + max_chunk_size]
|
|
chunk_logits = self.ex_model.forward(
|
|
input_ids=chunk.view(1, -1),
|
|
params={
|
|
"attn_mode": "flash_attn_nc", # No caching for training
|
|
"reconstruct": False # Force memory-efficient path
|
|
}
|
|
).float()
|
|
|
|
if all_logits is None:
|
|
all_logits = chunk_logits
|
|
else:
|
|
all_logits = torch.cat([all_logits, chunk_logits], dim=1)
|
|
|
|
logits = all_logits
|
|
|
|
if is_negative:
|
|
self.past_seq_negative = seq_tensor
|
|
else:
|
|
self.past_seq = seq_tensor
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, logits.shape[-1])
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss)
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
|
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
|
|
if isinstance(pretrained_model_name_or_path, str):
|
|
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
|
|
|
|
pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
|
|
|
|
return Exllamav3HF(pretrained_model_name_or_path)
|