text-generation-webui-mirror/modules/logits.py
2025-04-18 07:46:04 -07:00

122 lines
4.3 KiB
Python

import time
import traceback
import numpy as np
import torch
from modules import models, sampler_hijack, shared
from modules.logging_colors import logger
from modules.models import get_device, load_model
from modules.text_generation import generate_reply
global_scores = None
def get_next_logits(*args, **kwargs):
if shared.args.idle_timeout > 0 and shared.model is None and shared.model_name not in [None, 'None']:
shared.model, shared.tokenizer = load_model(shared.model_name)
needs_lock = not args[2] # use_samplers
if needs_lock:
shared.generation_lock.acquire()
try:
result = _get_next_logits(*args, **kwargs)
except Exception:
traceback.print_exc()
result = None
if needs_lock:
models.last_generation_time = time.time()
shared.generation_lock.release()
return result
def _get_next_logits(prompt, state, use_samplers, previous, top_logits=25, return_dict=False):
if shared.model is None:
logger.error("No model is loaded! Select one in the Model tab.")
return 'Error: No model is loaded1 Select one in the Model tab.', previous
is_non_hf_exllamav2 = shared.model.__class__.__name__ == 'Exllamav2Model'
is_llamacpp = shared.model.__class__.__name__ == 'LlamaServer'
if is_llamacpp:
logprobs = shared.model.get_logits(prompt, state, n_probs=top_logits, use_samplers=use_samplers)
if return_dict:
output = {}
for entry in logprobs:
token = repr(entry['token'])
prob = entry['prob'] if use_samplers else np.exp(entry['logprob'])
output[token] = prob
return output
else:
output = ''
for entry in logprobs:
token = repr(entry['token'])
prob = entry['prob'] if use_samplers else np.exp(entry['logprob'])
output += f"{prob:.5f} - {token}\n"
return output, previous
else:
if not use_samplers:
state = {'stream': True}
if use_samplers:
if is_non_hf_exllamav2:
# sampling is all done in C++ for exllama, so it is really hard to hijack
logger.error("Sampler hijacking is not supported non-Huggingface loaders.")
return 'Error: Sampler hijacking is not supported non-Huggingface loaders. Please disable the "Use samplers" option.', previous
state['max_new_tokens'] = 1
state['auto_max_new_tokens'] = False
for _ in generate_reply(prompt, state):
pass
scores = sampler_hijack.global_scores[-1]
else:
if is_non_hf_exllamav2:
device = get_device()
tokens = shared.tokenizer.encode(prompt)
if device:
tokens = tokens.to(device)
scores = shared.model.get_logits(tokens)[-1][-1]
else:
device = get_device()
tokens = shared.tokenizer.encode(prompt, return_tensors='pt')
if device:
tokens = tokens.to(device)
output = shared.model(input_ids=tokens)
scores = output['logits'][-1][-1]
probs = torch.softmax(scores, dim=-1, dtype=torch.float)
topk_values, topk_indices = torch.topk(probs, k=top_logits, largest=True, sorted=True)
if hasattr(shared.tokenizer, 'convert_ids_to_tokens'):
tokens = [shared.tokenizer.convert_ids_to_tokens(int(i)) for i in topk_indices]
else:
tokens = [shared.tokenizer.decode(i) for i in topk_indices]
if return_dict:
topk_values = [float(i) for i in topk_values]
output = {}
for row in list(zip(topk_values, tokens)):
key = row[1]
if isinstance(key, bytes):
try:
key = key.decode()
except:
key = key.decode('latin')
output[key] = row[0]
return output
else:
topk_values = [f"{float(i):.5f}" for i in topk_values]
output = ''
for row in list(zip(topk_values, tokens)):
output += f"{row[0]} - {repr(row[1])}\n"
return output, previous