import copy import json import time from collections import deque import tiktoken from pydantic import ValidationError from extensions.openai.errors import InvalidRequestError from extensions.openai.typing import ToolDefinition from extensions.openai.utils import debug_msg, getToolCallId, parseToolCall from modules import shared from modules.chat import ( generate_chat_prompt, generate_chat_reply, load_character_memoized, load_instruction_template_memoized ) from modules.presets import load_preset_memoized from modules.text_generation import decode, encode, generate_reply def convert_logprobs_to_tiktoken(model, logprobs): # more problems than it's worth. # try: # encoder = tiktoken.encoding_for_model(model) # # just pick the first one if it encodes to multiple tokens... 99.9% not required and maybe worse overall. # return dict([(encoder.decode([encoder.encode(token)[0]]), prob) for token, prob in logprobs.items()]) # except KeyError: # # assume native tokens if we can't find the tokenizer # return logprobs return logprobs def process_parameters(body, is_legacy=False): generate_params = body max_tokens_str = 'length' if is_legacy else 'max_tokens' generate_params['max_new_tokens'] = body.pop(max_tokens_str) if generate_params['truncation_length'] == 0: generate_params['truncation_length'] = shared.settings['truncation_length'] if generate_params['temperature'] == 0: generate_params['do_sample'] = False generate_params['top_k'] = 1 if body['preset'] is not None: preset = load_preset_memoized(body['preset']) generate_params.update(preset) generate_params['custom_stopping_strings'] = [] if 'stop' in body: # str or array, max len 4 (ignored) if isinstance(body['stop'], str): generate_params['custom_stopping_strings'] = [body['stop']] elif isinstance(body['stop'], list): generate_params['custom_stopping_strings'] = body['stop'] if shared.args.loader != 'llama.cpp': from transformers import LogitsProcessorList from modules.transformers_loader import ( LogitsBiasProcessor, LogprobProcessor ) logits_processor = [] logit_bias = body.get('logit_bias', None) if logit_bias: # {str: float, ...} logits_processor = [LogitsBiasProcessor(logit_bias)] logprobs = None # coming to chat eventually if 'logprobs' in body: logprobs = body.get('logprobs', 0) # maybe cap at topk? don't clamp 0-5. generate_params['logprob_proc'] = LogprobProcessor(logprobs) logits_processor.extend([generate_params['logprob_proc']]) else: logprobs = None if logits_processor: # requires logits_processor support generate_params['logits_processor'] = LogitsProcessorList(logits_processor) return generate_params def convert_history(history): ''' Chat histories in this program are in the format [message, reply]. This function converts OpenAI histories to that format. ''' chat_dialogue = [] current_message = "" current_reply = "" user_input = "" user_input_last = True system_message = "" for entry in history: content = entry["content"] role = entry["role"] if role == "user": user_input = content user_input_last = True if current_message: chat_dialogue.append([current_message, '', '']) current_message = "" current_message = content elif role == "assistant": if "tool_calls" in entry and isinstance(entry["tool_calls"], list) and len(entry["tool_calls"]) > 0 and content.strip() == "": continue # skip tool calls current_reply = content user_input_last = False if current_message: chat_dialogue.append([current_message, current_reply, '']) current_message = "" current_reply = "" else: chat_dialogue.append(['', current_reply, '']) elif role == "tool": user_input_last = False chat_dialogue.append(['', '', content]) elif role == "system": system_message += f"\n{content}" if system_message else content if not user_input_last: user_input = "" return user_input, system_message, {'internal': chat_dialogue, 'visible': copy.deepcopy(chat_dialogue)} def chat_completions_common(body: dict, is_legacy: bool = False, stream=False, prompt_only=False) -> dict: if body.get('functions', []): raise InvalidRequestError(message="functions is not supported.", param='functions') if body.get('function_call', ''): raise InvalidRequestError(message="function_call is not supported.", param='function_call') if 'messages' not in body: raise InvalidRequestError(message="messages is required", param='messages') tools = None if 'tools' in body and body['tools'] is not None and isinstance(body['tools'], list) and len(body['tools']) > 0: tools = validateTools(body['tools']) # raises InvalidRequestError if validation fails messages = body['messages'] for m in messages: if 'role' not in m: raise InvalidRequestError(message="messages: missing role", param='messages') elif m['role'] == 'function': raise InvalidRequestError(message="role: function is not supported.", param='messages') if 'content' not in m and "image_url" not in m: raise InvalidRequestError(message="messages: missing content", param='messages') # Chat Completions object_type = 'chat.completion' if not stream else 'chat.completion.chunk' created_time = int(time.time()) cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000)) resp_list = 'data' if is_legacy else 'choices' # generation parameters generate_params = process_parameters(body, is_legacy=is_legacy) continue_ = body['continue_'] # Instruction template if body['instruction_template_str']: instruction_template_str = body['instruction_template_str'] elif body['instruction_template']: instruction_template = body['instruction_template'] instruction_template = "Alpaca" if instruction_template == "None" else instruction_template instruction_template_str = load_instruction_template_memoized(instruction_template) else: instruction_template_str = shared.settings['instruction_template_str'] chat_template_str = body['chat_template_str'] or shared.default_settings['chat_template_str'] chat_instruct_command = body['chat_instruct_command'] or shared.default_settings['chat-instruct_command'] # Chat character character = body['character'] or shared.default_settings['character'] character = "Assistant" if character == "None" else character name1 = body['user_name'] or shared.default_settings['name1'] name1, name2, _, greeting, context = load_character_memoized(character, name1, '') name2 = body['bot_name'] or name2 context = body['context'] or context greeting = body['greeting'] or greeting user_bio = body['user_bio'] or '' # History user_input, custom_system_message, history = convert_history(messages) generate_params.update({ 'mode': body['mode'], 'name1': name1, 'name2': name2, 'context': context, 'greeting': greeting, 'user_bio': user_bio, 'instruction_template_str': instruction_template_str, 'custom_system_message': custom_system_message, 'chat_template_str': chat_template_str, 'chat-instruct_command': chat_instruct_command, 'tools': tools, 'history': history, 'stream': stream }) max_tokens = generate_params['max_new_tokens'] if max_tokens in [None, 0]: generate_params['max_new_tokens'] = 512 generate_params['auto_max_new_tokens'] = True requested_model = generate_params.pop('model') logprob_proc = generate_params.pop('logprob_proc', None) def chat_streaming_chunk(content, chunk_tool_calls=None): # begin streaming chunk = { "id": cmpl_id, "object": object_type, "created": created_time, "model": shared.model_name, resp_list: [{ "index": 0, "finish_reason": None, "delta": {'role': 'assistant', 'content': content, 'tool_calls': chunk_tool_calls}, }], } if logprob_proc: # not official for chat yet top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives) chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]} # else: # chunk[resp_list][0]["logprobs"] = None return chunk # generate reply ####################################### prompt = generate_chat_prompt(user_input, generate_params, _continue=continue_) if prompt_only: yield {'prompt': prompt} return if stream: yield chat_streaming_chunk('') generator = generate_chat_reply( user_input, generate_params, regenerate=False, _continue=continue_, loading_message=False) answer = '' seen_content = '' tool_calls = [] end_last_tool_call = 0 supported_tools = [x["function"]["name"] for x in tools] if tools is not None else None for a in generator: answer = a['internal'][-1][1] if supported_tools is not None: tool_call = parseToolCall(answer[end_last_tool_call:], supported_tools) if len(answer) > 0 else [] if len(tool_call) > 0: for tc in tool_call: tc["id"] = getToolCallId() tc["index"] = str(len(tool_calls)) tc["function"]["arguments"] = json.dumps(tc["function"]["arguments"]) tool_calls.append(tc) end_last_tool_call = len(answer) if stream: len_seen = len(seen_content) new_content = answer[len_seen:] if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet. continue chunk = chat_streaming_chunk(new_content) seen_content = answer yield chunk # stop generation if tool_calls were generated previously if len(tool_calls) > 0: break token_count = len(encode(prompt)[0]) completion_token_count = len(encode(answer)[0]) stop_reason = "stop" if len(tool_calls) > 0: stop_reason = "tool_calls" if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= generate_params['max_new_tokens']: stop_reason = "length" if stream: chunk = chat_streaming_chunk('', tool_calls) chunk[resp_list][0]['finish_reason'] = stop_reason chunk['usage'] = { "prompt_tokens": token_count, "completion_tokens": completion_token_count, "total_tokens": token_count + completion_token_count } yield chunk else: resp = { "id": cmpl_id, "object": object_type, "created": created_time, "model": shared.model_name, resp_list: [{ "index": 0, "finish_reason": stop_reason, "message": {"role": "assistant", "content": answer}, "tool_calls": tool_calls }], "usage": { "prompt_tokens": token_count, "completion_tokens": completion_token_count, "total_tokens": token_count + completion_token_count } } if logprob_proc: # not official for chat yet top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives) resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]} # else: # resp[resp_list][0]["logprobs"] = None yield resp def completions_common(body: dict, is_legacy: bool = False, stream=False): object_type = 'text_completion.chunk' if stream else 'text_completion' created_time = int(time.time()) cmpl_id = "conv-%d" % (int(time.time() * 1000000000)) resp_list = 'data' if is_legacy else 'choices' prompt_str = 'context' if is_legacy else 'prompt' # ... encoded as a string, array of strings, array of tokens, or array of token arrays. if prompt_str not in body: raise InvalidRequestError("Missing required input", param=prompt_str) # common params generate_params = process_parameters(body, is_legacy=is_legacy) max_tokens = generate_params['max_new_tokens'] generate_params['stream'] = stream requested_model = generate_params.pop('model') logprob_proc = generate_params.pop('logprob_proc', None) suffix = body['suffix'] if body['suffix'] else '' echo = body['echo'] if not stream: prompt_arg = body[prompt_str] if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)): prompt_arg = [prompt_arg] resp_list_data = [] total_completion_token_count = 0 total_prompt_token_count = 0 for idx, prompt in enumerate(prompt_arg, start=0): if isinstance(prompt[0], int): # token lists if requested_model == shared.model_name: prompt = decode(prompt)[0] else: try: encoder = tiktoken.encoding_for_model(requested_model) prompt = encoder.decode(prompt) except KeyError: prompt = decode(prompt)[0] prefix = prompt if echo else '' # generate reply ####################################### debug_msg({'prompt': prompt, 'generate_params': generate_params}) generator = generate_reply(prompt, generate_params, is_chat=False) answer = '' for a in generator: answer = a token_count = len(encode(prompt)[0]) total_prompt_token_count += token_count completion_token_count = len(encode(answer)[0]) total_completion_token_count += completion_token_count stop_reason = "stop" if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens: stop_reason = "length" respi = { "index": idx, "finish_reason": stop_reason, "text": prefix + answer + suffix, "logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None, } resp_list_data.extend([respi]) resp = { "id": cmpl_id, "object": object_type, "created": created_time, "model": shared.model_name, resp_list: resp_list_data, "usage": { "prompt_tokens": total_prompt_token_count, "completion_tokens": total_completion_token_count, "total_tokens": total_prompt_token_count + total_completion_token_count } } yield resp else: prompt = body[prompt_str] if isinstance(prompt, list): if prompt and isinstance(prompt[0], int): try: encoder = tiktoken.encoding_for_model(requested_model) prompt = encoder.decode(prompt) except KeyError: prompt = decode(prompt)[0] else: raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str) prefix = prompt if echo else '' token_count = len(encode(prompt)[0]) def text_streaming_chunk(content): # begin streaming chunk = { "id": cmpl_id, "object": object_type, "created": created_time, "model": shared.model_name, resp_list: [{ "index": 0, "finish_reason": None, "text": content, "logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None, }], } return chunk yield text_streaming_chunk(prefix) # generate reply ####################################### debug_msg({'prompt': prompt, 'generate_params': generate_params}) generator = generate_reply(prompt, generate_params, is_chat=False) answer = '' seen_content = '' completion_token_count = 0 for a in generator: answer = a len_seen = len(seen_content) new_content = answer[len_seen:] if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet. continue seen_content = answer chunk = text_streaming_chunk(new_content) yield chunk completion_token_count = len(encode(answer)[0]) stop_reason = "stop" if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens: stop_reason = "length" chunk = text_streaming_chunk(suffix) chunk[resp_list][0]["finish_reason"] = stop_reason chunk["usage"] = { "prompt_tokens": token_count, "completion_tokens": completion_token_count, "total_tokens": token_count + completion_token_count } yield chunk def chat_completions(body: dict, is_legacy: bool = False) -> dict: generator = chat_completions_common(body, is_legacy, stream=False) return deque(generator, maxlen=1).pop() def stream_chat_completions(body: dict, is_legacy: bool = False): for resp in chat_completions_common(body, is_legacy, stream=True): yield resp def completions(body: dict, is_legacy: bool = False) -> dict: generator = completions_common(body, is_legacy, stream=False) return deque(generator, maxlen=1).pop() def stream_completions(body: dict, is_legacy: bool = False): for resp in completions_common(body, is_legacy, stream=True): yield resp def validateTools(tools: list[dict]): # Validate each tool definition in the JSON array valid_tools = None for idx in range(len(tools)): tool = tools[idx] try: tool_definition = ToolDefinition(**tool) if valid_tools is None: valid_tools = [] valid_tools.append(tool) except ValidationError: raise InvalidRequestError(message=f"Invalid tool specification at index {idx}.", param='tools') return valid_tools