207 lines
6.6 KiB
Python
207 lines
6.6 KiB
Python
"""
|
|
Listen on UDP for audio from Rhasspy, detect wake words using Open Wake Word,
|
|
and publish on MQTT when wake word is detected to trigger Rhasspy speech-to-text.
|
|
"""
|
|
|
|
import argparse
|
|
import io
|
|
import queue
|
|
import socket
|
|
import threading
|
|
import time
|
|
import wave
|
|
from collections import deque
|
|
from json import dumps
|
|
|
|
import numpy as np
|
|
import paho.mqtt.client
|
|
import yaml
|
|
from openwakeword.model import Model
|
|
|
|
RHASSPY_BYTES = 2092
|
|
RHASSPY_FRAMES = 1024
|
|
OWW_FRAMES = 1280 # 80 ms window @ 16 kHz = 1280 frames
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Open Wake Word detection for Rhasspy")
|
|
parser.add_argument(
|
|
"-c",
|
|
"--config",
|
|
default="config.yaml",
|
|
help="Configuration yaml file, defaults to `config.yaml`",
|
|
dest="config_file",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
|
|
def load_config(config_file):
|
|
"""Use config.yaml to override the default configuration."""
|
|
try:
|
|
with open(config_file, "r") as f:
|
|
config_override = yaml.safe_load(f)
|
|
except FileNotFoundError:
|
|
config_override = {}
|
|
|
|
default_config = {
|
|
"mqtt": {
|
|
"broker": "127.0.0.1",
|
|
"port": 1883,
|
|
"username": None,
|
|
"password": None,
|
|
},
|
|
"oww": {
|
|
"activation_threshold": 0.7,
|
|
"deactivation_threshold": 0.2,
|
|
"activation_samples": 3,
|
|
"vad_threshold": 0,
|
|
"enable_speex_noise_suppression": False,
|
|
},
|
|
"udp_ports": {"base": 12202},
|
|
}
|
|
|
|
config = {**default_config, **config_override}
|
|
if not config["udp_ports"]:
|
|
print(
|
|
"No UDP ports configured. Configure UDP ports to receive audio for wakeword detection.",
|
|
flush=True,
|
|
)
|
|
exit()
|
|
return config
|
|
|
|
|
|
class RhasspyUdpAudio(threading.Thread):
|
|
"""Get audio from UDP stream and add to wake word detection queue."""
|
|
|
|
def __init__(self, roomname, port, queue):
|
|
threading.Thread.__init__(self)
|
|
self.roomname = roomname
|
|
self.port = port
|
|
self.queue = queue
|
|
self.buffer = []
|
|
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
|
self.sock.bind(("", port))
|
|
|
|
def run(self):
|
|
"""Thread to receive UDP audio and add to processing queue."""
|
|
print(
|
|
f"Listening for {self.roomname} audio on UDP port {self.port}", flush=True
|
|
)
|
|
while True:
|
|
data, addr = self.sock.recvfrom(RHASSPY_BYTES)
|
|
audio = wave.open(io.BytesIO(data))
|
|
frames = audio.readframes(RHASSPY_FRAMES)
|
|
self.buffer.extend(np.frombuffer(frames, dtype=np.int16))
|
|
if len(self.buffer) > OWW_FRAMES:
|
|
self.queue.put(
|
|
(
|
|
self.roomname,
|
|
time.time(),
|
|
np.asarray(self.buffer[:OWW_FRAMES], dtype=np.int16),
|
|
)
|
|
)
|
|
self.buffer = self.buffer[OWW_FRAMES:]
|
|
|
|
|
|
class Prediction(threading.Thread):
|
|
"""Process wake word detection queue and publishing MQTT message when a wake word is detected."""
|
|
|
|
def __init__(self, queue):
|
|
threading.Thread.__init__(self)
|
|
self.queue = queue
|
|
self.filters = {}
|
|
self.mqtt = paho.mqtt.client.Client()
|
|
self.mqtt.username_pw_set(
|
|
config["mqtt"]["username"], config["mqtt"]["password"]
|
|
)
|
|
self.mqtt.connect(config["mqtt"]["broker"], config["mqtt"]["port"], 60)
|
|
print("MQTT: Connected to broker", flush=True)
|
|
|
|
self.oww = Model(
|
|
vad_threshold=config["oww"]["vad_threshold"],
|
|
enable_speex_noise_suppression=config["oww"][
|
|
"enable_speex_noise_suppression"
|
|
],
|
|
)
|
|
|
|
def run(self):
|
|
"""Wake word detection thread."""
|
|
while True:
|
|
roomname, timestamp, audio = self.queue.get()
|
|
prediction = self.oww.predict(audio)
|
|
for wakeword in prediction.keys():
|
|
confidence = prediction[wakeword]
|
|
if self.__filter(wakeword, confidence):
|
|
print(
|
|
f"Detected wakeword {wakeword} in {roomname}",
|
|
flush=True,
|
|
)
|
|
self.__publish(wakeword, roomname)
|
|
|
|
def __filter(self, wakeword, confidence):
|
|
"""
|
|
Filter so that a wakeword is only triggered once per utterance.
|
|
|
|
When simple moving average (of length `activation_samples`) crosses the `activation_threshold`
|
|
then trigger Rhasspy. Only "re-arm" the wakeword when the moving average drops below
|
|
the `deactivation_threshold`.
|
|
"""
|
|
try:
|
|
self.filters[wakeword]["samples"].append(confidence)
|
|
except KeyError:
|
|
self.filters[wakeword] = {
|
|
"samples": deque(
|
|
[confidence], maxlen=config["oww"]["activation_samples"]
|
|
),
|
|
"active": False,
|
|
}
|
|
moving_average = (
|
|
sum(self.filters[wakeword]["samples"]) / config["oww"]["activation_samples"]
|
|
)
|
|
activated = False
|
|
if (
|
|
not self.filters[wakeword]["active"]
|
|
and moving_average >= config["oww"]["activation_threshold"]
|
|
):
|
|
self.filters[wakeword]["active"] = True
|
|
activated = True
|
|
elif (
|
|
self.filters[wakeword]["active"]
|
|
and moving_average < config["oww"]["deactivation_threshold"]
|
|
):
|
|
self.filters[wakeword]["active"] = False
|
|
if moving_average > 0.1:
|
|
print(
|
|
f"{wakeword:<16} {activated!s:<8} {self.filters[wakeword]}", flush=True
|
|
)
|
|
return activated
|
|
|
|
def __publish(self, wakeword, roomname):
|
|
"""Publish wake word message to Rhasspy Hermes/MQTT."""
|
|
payload = {
|
|
"modelId": wakeword,
|
|
"modelVersion": "",
|
|
"modelType": "universal",
|
|
"currentSensitivity": config["oww"]["activation_threshold"],
|
|
"siteId": roomname,
|
|
"sessionId": None,
|
|
"sendAudioCaptured": None,
|
|
"lang": None,
|
|
"customEntities": None,
|
|
}
|
|
self.mqtt.publish(f"hermes/hotword/{wakeword}/detected", dumps(payload))
|
|
print("MQTT: Published to Rhasspy", flush=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
config = load_config(args.config_file)
|
|
q = queue.Queue()
|
|
threads = []
|
|
for roomname, port in config["udp_ports"].items():
|
|
t = RhasspyUdpAudio(roomname, port, q)
|
|
t.daemon = True
|
|
t.start()
|
|
threads.append(t)
|
|
t = Prediction(q)
|
|
t.start()
|
|
threads.append(t)
|
|
print(f"Threads: {threads}")
|