mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 03:26:47 -04:00
All models now download when required Model downloader can handle multiple files in model
421 lines
16 KiB
Python
421 lines
16 KiB
Python
#!/usr/bin python3
|
|
""" Utilities available across all scripts """
|
|
|
|
import logging
|
|
import os
|
|
import urllib
|
|
import warnings
|
|
import zipfile
|
|
from socket import timeout as socket_timeout, error as socket_error
|
|
|
|
from hashlib import sha1
|
|
from pathlib import Path
|
|
from re import finditer
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import dlib
|
|
|
|
from tqdm import tqdm
|
|
|
|
from lib.faces_detect import DetectedFace
|
|
from lib.logger import get_loglevel
|
|
|
|
|
|
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
|
|
|
# Global variables
|
|
_image_extensions = [ # pylint: disable=invalid-name
|
|
".bmp", ".jpeg", ".jpg", ".png", ".tif", ".tiff"]
|
|
_video_extensions = [ # pylint: disable=invalid-name
|
|
".avi", ".flv", ".mkv", ".mov", ".mp4", ".mpeg", ".webm"]
|
|
|
|
|
|
def get_folder(path, make_folder=True):
|
|
""" Return a path to a folder, creating it if it doesn't exist """
|
|
logger.debug("Requested path: '%s'", path)
|
|
output_dir = Path(path)
|
|
if not make_folder and not output_dir.exists():
|
|
logger.debug("%s does not exist", path)
|
|
return None
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
logger.debug("Returning: '%s'", output_dir)
|
|
return output_dir
|
|
|
|
|
|
def get_image_paths(directory):
|
|
""" Return a list of images that reside in a folder """
|
|
image_extensions = _image_extensions
|
|
dir_contents = list()
|
|
|
|
if not os.path.exists(directory):
|
|
logger.debug("Creating folder: '%s'", directory)
|
|
directory = get_folder(directory)
|
|
|
|
dir_scanned = sorted(os.scandir(directory), key=lambda x: x.name)
|
|
logger.debug("Scanned Folder contains %s files", len(dir_scanned))
|
|
logger.trace("Scanned Folder Contents: %s", dir_scanned)
|
|
|
|
for chkfile in dir_scanned:
|
|
if any([chkfile.name.lower().endswith(ext)
|
|
for ext in image_extensions]):
|
|
logger.trace("Adding '%s' to image list", chkfile.path)
|
|
dir_contents.append(chkfile.path)
|
|
|
|
logger.debug("Returning %s images", len(dir_contents))
|
|
return dir_contents
|
|
|
|
|
|
def hash_image_file(filename):
|
|
""" Return an image file's sha1 hash """
|
|
img = cv2.imread(filename) # pylint: disable=no-member
|
|
img_hash = sha1(img).hexdigest()
|
|
logger.trace("filename: '%s', hash: %s", filename, img_hash)
|
|
return img_hash
|
|
|
|
|
|
def hash_encode_image(image, extension):
|
|
""" Encode the image, get the hash and return the hash with
|
|
encoded image """
|
|
img = cv2.imencode(extension, image)[1] # pylint: disable=no-member
|
|
f_hash = sha1(
|
|
cv2.imdecode(img, cv2.IMREAD_UNCHANGED)).hexdigest() # pylint: disable=no-member
|
|
return f_hash, img
|
|
|
|
|
|
def backup_file(directory, filename):
|
|
""" Backup a given file by appending .bk to the end """
|
|
logger.trace("Backing up: '%s'", filename)
|
|
origfile = os.path.join(directory, filename)
|
|
backupfile = origfile + '.bk'
|
|
if os.path.exists(backupfile):
|
|
logger.trace("Removing existing file: '%s'", backup_file)
|
|
os.remove(backupfile)
|
|
if os.path.exists(origfile):
|
|
logger.trace("Renaming: '%s' to '%s'", origfile, backup_file)
|
|
os.rename(origfile, backupfile)
|
|
|
|
|
|
def set_system_verbosity(loglevel):
|
|
""" Set the verbosity level of tensorflow and suppresses
|
|
future and deprecation warnings from any modules
|
|
From:
|
|
https://stackoverflow.com/questions/35911252/disable-tensorflow-debugging-information
|
|
Can be set to:
|
|
0 - all logs shown
|
|
1 - filter out INFO logs
|
|
2 - filter out WARNING logs
|
|
3 - filter out ERROR logs """
|
|
|
|
numeric_level = get_loglevel(loglevel)
|
|
loglevel = "2" if numeric_level > 15 else "0"
|
|
logger.debug("System Verbosity level: %s", loglevel)
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = loglevel
|
|
if loglevel != '0':
|
|
for warncat in (FutureWarning, DeprecationWarning, UserWarning):
|
|
warnings.simplefilter(action='ignore', category=warncat)
|
|
|
|
|
|
def rotate_landmarks(face, rotation_matrix):
|
|
# pylint: disable=c-extension-no-member
|
|
""" Rotate the landmarks and bounding box for faces
|
|
found in rotated images.
|
|
Pass in a DetectedFace object, Alignments dict or DLib rectangle"""
|
|
logger.trace("Rotating landmarks: (rotation_matrix: %s, type(face): %s",
|
|
rotation_matrix, type(face))
|
|
if isinstance(face, DetectedFace):
|
|
bounding_box = [[face.x, face.y],
|
|
[face.x + face.w, face.y],
|
|
[face.x + face.w, face.y + face.h],
|
|
[face.x, face.y + face.h]]
|
|
landmarks = face.landmarksXY
|
|
|
|
elif isinstance(face, dict):
|
|
bounding_box = [[face.get("x", 0), face.get("y", 0)],
|
|
[face.get("x", 0) + face.get("w", 0),
|
|
face.get("y", 0)],
|
|
[face.get("x", 0) + face.get("w", 0),
|
|
face.get("y", 0) + face.get("h", 0)],
|
|
[face.get("x", 0),
|
|
face.get("y", 0) + face.get("h", 0)]]
|
|
landmarks = face.get("landmarksXY", list())
|
|
|
|
elif isinstance(face,
|
|
dlib.rectangle): # pylint: disable=c-extension-no-member
|
|
bounding_box = [[face.left(), face.top()],
|
|
[face.right(), face.top()],
|
|
[face.right(), face.bottom()],
|
|
[face.left(), face.bottom()]]
|
|
landmarks = list()
|
|
else:
|
|
raise ValueError("Unsupported face type")
|
|
|
|
logger.trace("Original landmarks: %s", landmarks)
|
|
|
|
rotation_matrix = cv2.invertAffineTransform( # pylint: disable=no-member
|
|
rotation_matrix)
|
|
rotated = list()
|
|
for item in (bounding_box, landmarks):
|
|
if not item:
|
|
continue
|
|
points = np.array(item, np.int32)
|
|
points = np.expand_dims(points, axis=0)
|
|
transformed = cv2.transform(points, # pylint: disable=no-member
|
|
rotation_matrix).astype(np.int32)
|
|
rotated.append(transformed.squeeze())
|
|
|
|
# Bounding box should follow x, y planes, so get min/max
|
|
# for non-90 degree rotations
|
|
pt_x = min([pnt[0] for pnt in rotated[0]])
|
|
pt_y = min([pnt[1] for pnt in rotated[0]])
|
|
pt_x1 = max([pnt[0] for pnt in rotated[0]])
|
|
pt_y1 = max([pnt[1] for pnt in rotated[0]])
|
|
|
|
if isinstance(face, DetectedFace):
|
|
face.x = int(pt_x)
|
|
face.y = int(pt_y)
|
|
face.w = int(pt_x1 - pt_x)
|
|
face.h = int(pt_y1 - pt_y)
|
|
face.r = 0
|
|
if len(rotated) > 1:
|
|
rotated_landmarks = [tuple(point) for point in rotated[1].tolist()]
|
|
face.landmarksXY = rotated_landmarks
|
|
elif isinstance(face, dict):
|
|
face["x"] = int(pt_x)
|
|
face["y"] = int(pt_y)
|
|
face["w"] = int(pt_x1 - pt_x)
|
|
face["h"] = int(pt_y1 - pt_y)
|
|
face["r"] = 0
|
|
if len(rotated) > 1:
|
|
rotated_landmarks = [tuple(point) for point in rotated[1].tolist()]
|
|
face["landmarksXY"] = rotated_landmarks
|
|
else:
|
|
rotated_landmarks = dlib.rectangle( # pylint: disable=c-extension-no-member
|
|
int(pt_x), int(pt_y), int(pt_x1), int(pt_y1))
|
|
face = rotated_landmarks
|
|
|
|
logger.trace("Rotated landmarks: %s", rotated_landmarks)
|
|
return face
|
|
|
|
|
|
def camel_case_split(identifier):
|
|
""" Split a camel case name
|
|
from: https://stackoverflow.com/questions/29916065 """
|
|
matches = finditer(
|
|
".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)",
|
|
identifier)
|
|
return [m.group(0) for m in matches]
|
|
|
|
|
|
def safe_shutdown():
|
|
""" Close queues, threads and processes in event of crash """
|
|
logger.debug("Safely shutting down")
|
|
from lib.queue_manager import queue_manager
|
|
from lib.multithreading import terminate_processes
|
|
queue_manager.terminate_queues()
|
|
terminate_processes()
|
|
logger.debug("Cleanup complete. Shutting down queue manager and exiting")
|
|
queue_manager._log_queue.put(None) # pylint: disable=protected-access
|
|
while not queue_manager._log_queue.empty(): # pylint: disable=protected-access
|
|
continue
|
|
queue_manager.manager.shutdown()
|
|
|
|
|
|
class GetModel():
|
|
""" Check for models in their cache path
|
|
If available, return the path, if not available, get, unzip and install model
|
|
|
|
model_filename: The name of the model to be loaded (see notes below)
|
|
cache_dir: The model cache folder of the current plugin calling this class
|
|
IE: The folder that holds the model to be loaded.
|
|
|
|
NB: Models must have a certain naming convention:
|
|
IE: <model_name>_v<version_number>.<extension>
|
|
EG: s3fd_v1.pb
|
|
|
|
Multiple models can exist within the model_filename. They should be passed as a list
|
|
and follow the same naming convention as above. Any differences in filename should
|
|
occur AFTER the version number.
|
|
IE: [<model_name>_v<version_number><differentiating_information>.<extension>]
|
|
EG: [mtcnn_det_v1.1.py, mtcnn_det_v1.2.py, mtcnn_det_v1.3.py]
|
|
[resnet_ssd_v1.caffemodel, resnet_ssd_v1.prototext]
|
|
|
|
Models to be handled by this class must be added to the _model_id property
|
|
with their appropriate github identier mapped.
|
|
See https://github.com/deepfakes-models/faceswap-models for more information
|
|
"""
|
|
|
|
def __init__(self, model_filename, cache_dir):
|
|
if not isinstance(model_filename, list):
|
|
model_filename = [model_filename]
|
|
self.model_filename = model_filename
|
|
self.cache_dir = cache_dir
|
|
self.url_base = "https://github.com/deepfakes-models/faceswap-models/releases/download"
|
|
self.chunk_size = 1024 # Chunk size for downloading and unzipping
|
|
|
|
self.get()
|
|
self.model_path = self._model_path
|
|
|
|
@property
|
|
def _model_id(self):
|
|
""" Return a mapping of model names to model ids as stored in github """
|
|
ids = {
|
|
# EXTRACT (SECTION 1)
|
|
"face-alignment-network_2d4": 0,
|
|
"cnn-facial-landmark": 1,
|
|
"mtcnn_det": 2,
|
|
"s3fd": 3,
|
|
"resnet_ssd": 4,
|
|
# TRAIN (SECTION 2)
|
|
# CONVERT (SECTION 3)
|
|
}
|
|
return ids[self._model_name]
|
|
|
|
@property
|
|
def _model_full_name(self):
|
|
""" Return the model full name from the filename(s) """
|
|
common_prefix = os.path.commonprefix(self.model_filename)
|
|
retval = os.path.splitext(common_prefix)[0]
|
|
logger.trace(retval)
|
|
return retval
|
|
|
|
@property
|
|
def _model_name(self):
|
|
""" Return the model name from the model full name """
|
|
retval = self._model_full_name[:self._model_full_name.rfind("_")]
|
|
logger.trace(retval)
|
|
return retval
|
|
|
|
@property
|
|
def _model_version(self):
|
|
""" Return the model version from the model full name """
|
|
retval = int(self._model_full_name[self._model_full_name.rfind("_") + 2:])
|
|
logger.trace(retval)
|
|
return retval
|
|
|
|
@property
|
|
def _model_path(self):
|
|
""" Return the model path(s) in the cache folder """
|
|
retval = [os.path.join(self.cache_dir, fname) for fname in self.model_filename]
|
|
retval = retval[0] if len(retval) == 1 else retval
|
|
logger.trace(retval)
|
|
return retval
|
|
|
|
@property
|
|
def _model_zip_path(self):
|
|
""" Full path to downloaded zip file """
|
|
retval = os.path.join(self.cache_dir, "{}.zip".format(self._model_full_name))
|
|
logger.trace(retval)
|
|
return retval
|
|
|
|
@property
|
|
def _model_exists(self):
|
|
""" Check model(s) exist """
|
|
if isinstance(self._model_path, list):
|
|
retval = all(os.path.exists(pth) for pth in self._model_path)
|
|
else:
|
|
retval = os.path.exists(self._model_path)
|
|
logger.trace(retval)
|
|
return retval
|
|
|
|
@property
|
|
def _plugin_section(self):
|
|
""" Get the plugin section from the config_dir """
|
|
path = os.path.normpath(self.cache_dir)
|
|
split = path.split(os.sep)
|
|
retval = split[split.index("plugins") + 1]
|
|
logger.trace(retval)
|
|
return retval
|
|
|
|
@property
|
|
def _url_section(self):
|
|
""" Return the section ID in github for this plugin type """
|
|
sections = dict(extract=1, train=2, convert=3)
|
|
retval = sections[self._plugin_section]
|
|
logger.trace(retval)
|
|
return retval
|
|
|
|
@property
|
|
def _url_download(self):
|
|
""" Base URL for models """
|
|
tag = "v{}.{}.{}".format(self._url_section, self._model_id, self._model_version)
|
|
retval = "{}/{}/{}.zip".format(self.url_base, tag, self._model_full_name)
|
|
logger.trace("Download url: %s", retval)
|
|
return retval
|
|
|
|
def get(self):
|
|
""" Check the model exists, if not, download and unzip into location """
|
|
if self._model_exists:
|
|
logger.debug("Model exists: %s", self._model_path)
|
|
return
|
|
self.download_model()
|
|
self.unzip_model()
|
|
os.remove(self._model_zip_path)
|
|
|
|
def download_model(self):
|
|
""" Download model zip to cache dir """
|
|
logger.info("Downloading model: '%s'", self._model_name)
|
|
attempts = 3
|
|
for attempt in range(attempts):
|
|
try:
|
|
response = urllib.request.urlopen(self._url_download, timeout=10)
|
|
logger.debug("header info: {%s}", response.info())
|
|
logger.debug("Return Code: %s", response.getcode())
|
|
self.write_zipfile(response)
|
|
break
|
|
except (socket_error, socket_timeout,
|
|
urllib.error.HTTPError, urllib.error.URLError) as err:
|
|
if attempt + 1 < attempts:
|
|
logger.warning("Error downloading model (%s). Retrying %s of %s...",
|
|
str(err), attempt + 2, attempts)
|
|
else:
|
|
logger.error("Failed to download model. Exiting. (Error: '%s', URL: '%s')",
|
|
str(err), self._url_download)
|
|
logger.info("You can manually download the model from: %s and unzip the "
|
|
"contents to: %s", self._url_download, self.cache_dir)
|
|
exit(1)
|
|
|
|
def write_zipfile(self, response):
|
|
""" Write the model zip file to disk """
|
|
length = int(response.getheader("content-length"))
|
|
with open(self._model_zip_path, "wb") as out_file:
|
|
pbar = tqdm(desc="Downloading",
|
|
unit="B",
|
|
total=length,
|
|
unit_scale=True,
|
|
unit_divisor=1024)
|
|
while True:
|
|
buffer = response.read(self.chunk_size)
|
|
if not buffer:
|
|
break
|
|
pbar.update(len(buffer))
|
|
out_file.write(buffer)
|
|
|
|
def unzip_model(self):
|
|
""" Unzip the model file to the cachedir """
|
|
logger.info("Extracting: '%s'", self._model_name)
|
|
try:
|
|
zip_file = zipfile.ZipFile(self._model_zip_path, "r")
|
|
self.write_model(zip_file)
|
|
except Exception as err: # pylint:disable=broad-except
|
|
logger.error("Unable to extract model file: %s", str(err))
|
|
exit(1)
|
|
|
|
def write_model(self, zip_file):
|
|
""" Extract files from zipfile and write, with progress bar """
|
|
length = sum(f.file_size for f in zip_file.infolist())
|
|
fnames = zip_file.namelist()
|
|
logger.debug("Zipfile: Filenames: %s, Total Size: %s", fnames, length)
|
|
pbar = tqdm(desc="Extracting", unit="B", total=length, unit_scale=True, unit_divisor=1024)
|
|
for fname in fnames:
|
|
out_fname = os.path.join(self.cache_dir, fname)
|
|
logger.debug("Extracting from: '%s' to '%s'", self._model_zip_path, out_fname)
|
|
zipped = zip_file.open(fname)
|
|
with open(out_fname, "wb") as out_file:
|
|
while True:
|
|
buffer = zipped.read(self.chunk_size)
|
|
if not buffer:
|
|
break
|
|
pbar.update(len(buffer))
|
|
out_file.write(buffer)
|
|
zip_file.close()
|