1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/lib/aligner.py
torzdf d93e7b1114 Smart Mask - Extract code review
- Lint simple_tests.py
- Only reformat alignments file if it exists otherwise change filename
- Update legacy alignments to new format at all stages
- faces_detect.Mask.from_dict - logging format fix
- convert.py fix otf for new pipeline
- cli.py - Add note that masks not used. Revert convert masks
- faces_detect.py - Revert non-extract code
- Add .p and .pickle extensions for serializer
- plugins/extract revert some changes
- scripts/fsmedia - Revert code changes
- Pipeline - cleanup
- Consistant alpha channel stripping (fixes single-process)
- Store landmarks as numpy array
- Code attribution
- Normalize feed face and reference face to 0.0 - 1.0 in convert
- Lock in mask VRAM sized
- Add documentation to plugin_loader
- Update alignments tool to work with new format
2019-10-18 15:44:25 +00:00

129 lines
5.9 KiB
Python

#!/usr/bin/env python3
""" Aligner for faceswap.py """
import logging
import cv2
import numpy as np
from lib.umeyama import umeyama
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class Extract():
""" Based on the original https://www.reddit.com/r/deepfakes/
code sample + contribs """
def extract(self, image, face, size):
""" Extract a face from an image """
logger.trace("size: %s", size)
padding = int(size * 0.1875)
alignment = get_align_mat(face)
extracted = self.transform(image, alignment, size, padding)
logger.trace("Returning face and alignment matrix: (alignment_matrix: %s)", alignment)
return extracted, alignment
@staticmethod
def transform_matrix(mat, size, padding):
""" Transform the matrix for current size and padding """
logger.trace("size: %s. padding: %s", size, padding)
matrix = mat * (size - 2 * padding)
matrix[:, 2] += padding
logger.trace("Returning: %s", matrix)
return matrix
def transform(self, image, mat, size, padding=0):
""" Transform Image """
logger.trace("matrix: %s, size: %s. padding: %s", mat, size, padding)
matrix = self.transform_matrix(mat, size, padding)
interpolators = get_matrix_scaling(matrix)
retval = cv2.warpAffine(image, # pylint: disable=no-member
matrix, (size, size), flags=interpolators[0])
return retval
def transform_points(self, points, mat, size, padding=0):
""" Transform points along matrix """
logger.trace("points: %s, matrix: %s, size: %s. padding: %s", points, mat, size, padding)
matrix = self.transform_matrix(mat, size, padding)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, # pylint: disable=no-member
matrix, points.shape)
retval = np.squeeze(points)
logger.trace("Returning: %s", retval)
return retval
def get_original_roi(self, mat, size, padding=0):
""" Return the square aligned box location on the original image """
logger.trace("matrix: %s, size: %s. padding: %s", mat, size, padding)
matrix = self.transform_matrix(mat, size, padding)
points = np.array([[0, 0], [0, size - 1], [size - 1, size - 1], [size - 1, 0]], np.int32)
points = points.reshape((-1, 1, 2))
matrix = cv2.invertAffineTransform(matrix) # pylint: disable=no-member
logger.trace("Returning: (points: %s, matrix: %s", points, matrix)
return cv2.transform(points, matrix) # pylint: disable=no-member
@staticmethod
def get_feature_mask(aligned_landmarks_68, size, padding=0, dilation=30):
""" Return the face feature mask """
logger.trace("aligned_landmarks_68: %s, size: %s, padding: %s, dilation: %s",
aligned_landmarks_68, size, padding, dilation)
scale = size - 2 * padding
translation = padding
pad_mat = np.matrix([[scale, 0.0, translation], [0.0, scale, translation]])
aligned_landmarks_68 = np.expand_dims(aligned_landmarks_68, axis=1)
aligned_landmarks_68 = cv2.transform(aligned_landmarks_68, # pylint: disable=no-member
pad_mat,
aligned_landmarks_68.shape)
aligned_landmarks_68 = np.squeeze(aligned_landmarks_68)
l_eye_points = aligned_landmarks_68[42:48].tolist()
l_brow_points = aligned_landmarks_68[22:27].tolist()
r_eye_points = aligned_landmarks_68[36:42].tolist()
r_brow_points = aligned_landmarks_68[17:22].tolist()
nose_points = aligned_landmarks_68[27:36].tolist()
chin_points = aligned_landmarks_68[8:11].tolist()
mouth_points = aligned_landmarks_68[48:68].tolist()
# TODO remove excessive reshapes and flattens
l_eye = np.array(l_eye_points + l_brow_points).reshape((-1, 2)).astype(int).flatten()
r_eye = np.array(r_eye_points + r_brow_points).reshape((-1, 2)).astype(int).flatten()
mouth = np.array(mouth_points + nose_points + chin_points)
mouth = mouth.reshape((-1, 2)).astype(int).flatten()
l_eye_hull = cv2.convexHull(l_eye.reshape((-1, 2))) # pylint: disable=no-member
r_eye_hull = cv2.convexHull(r_eye.reshape((-1, 2))) # pylint: disable=no-member
mouth_hull = cv2.convexHull(mouth.reshape((-1, 2))) # pylint: disable=no-member
mask = np.zeros((size, size, 3), dtype=float)
cv2.fillConvexPoly(mask, # pylint: disable=no-member
l_eye_hull, (1, 1, 1))
cv2.fillConvexPoly(mask, # pylint: disable=no-member
r_eye_hull, (1, 1, 1))
cv2.fillConvexPoly(mask, # pylint: disable=no-member
mouth_hull, (1, 1, 1))
if dilation > 0:
kernel = np.ones((dilation, dilation), np.uint8)
mask = cv2.dilate(mask, # pylint: disable=no-member
kernel, iterations=1)
logger.trace("Returning: %s", mask)
return mask
def get_matrix_scaling(mat):
""" Get the correct interpolator """
x_scale = np.sqrt(mat[0, 0] * mat[0, 0] + mat[0, 1] * mat[0, 1])
y_scale = (mat[0, 0] * mat[1, 1] - mat[0, 1] * mat[1, 0]) / x_scale
avg_scale = (x_scale + y_scale) * 0.5
if avg_scale >= 1.:
interpolators = cv2.INTER_CUBIC, cv2.INTER_AREA # pylint: disable=no-member
else:
interpolators = cv2.INTER_AREA, cv2.INTER_CUBIC # pylint: disable=no-member
logger.trace("interpolator: %s, inverse interpolator: %s", interpolators[0], interpolators[1])
return interpolators
def get_align_mat(face):
""" Return the alignment Matrix """
mat_umeyama = umeyama(face.landmarks_xy[17:], True)[0:2]
return mat_umeyama