mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 20:13:52 -04:00
* Core Updates - Remove lib.utils.keras_backend_quiet and replace with get_backend() where relevant - Document lib.gpu_stats and lib.sys_info - Remove call to GPUStats.is_plaidml from convert and replace with get_backend() - lib.gui.menu - typofix * Update Dependencies Bump Tensorflow Version Check * Port extraction to tf2 * Add custom import finder for loading Keras or tf.keras depending on backend * Add `tensorflow` to KerasFinder search path * Basic TF2 training running * model.initializers - docstring fix * Fix and pass tests for tf2 * Replace Keras backend tests with faceswap backend tests * Initial optimizers update * Monkey patch tf.keras optimizer * Remove custom Adam Optimizers and Memory Saving Gradients * Remove multi-gpu option. Add Distribution to cli * plugins.train.model._base: Add Mirror, Central and Default distribution strategies * Update tensorboard kwargs for tf2 * Penalized Loss - Fix for TF2 and AMD * Fix syntax for tf2.1 * requirements typo fix * Explicit None for clipnorm if using a distribution strategy * Fix penalized loss for distribution strategies * Update Dlight * typo fix * Pin to TF2.2 * setup.py - Install tensorflow from pip if not available in Conda * Add reduction options and set default for mirrored distribution strategy * Explicitly use default strategy rather than nullcontext * lib.model.backup_restore documentation * Remove mirrored strategy reduction method and default based on OS * Initial restructure - training * Remove PingPong Start model.base refactor * Model saving and resuming enabled * More tidying up of model.base * Enable backup and snapshotting * Re-enable state file Remove loss names from state file Fix print loss function Set snapshot iterations correctly * Revert original model to Keras Model structure rather than custom layer Output full model and sub model summary Change NNBlocks to callables rather than custom keras layers * Apply custom Conv2D layer * Finalize NNBlock restructure Update Dfaker blocks * Fix reloading model under a different distribution strategy * Pass command line arguments through to trainer * Remove training_opts from model and reference params directly * Tidy up model __init__ * Re-enable tensorboard logging Suppress "Model Not Compiled" warning * Fix timelapse * lib.model.nnblocks - Bugfix residual block Port dfaker bugfix original * dfl-h128 ported * DFL SAE ported * IAE Ported * dlight ported * port lightweight * realface ported * unbalanced ported * villain ported * lib.cli.args - Update Batchsize + move allow_growth to config * Remove output shape definition Get image sizes per side rather than globally * Strip mask input from encoder * Fix learn mask and output learned mask to preview * Trigger Allow Growth prior to setting strategy * Fix GUI Graphing * GUI - Display batchsize correctly + fix training graphs * Fix penalized loss * Enable mixed precision training * Update analysis displayed batch to match input * Penalized Loss - Multi-GPU Fix * Fix all losses for TF2 * Fix Reflect Padding * Allow different input size for each side of the model * Fix conv-aware initialization on reload * Switch allow_growth order * Move mixed_precision to cli * Remove distrubution strategies * Compile penalized loss sub-function into LossContainer * Bump default save interval to 250 Generate preview on first iteration but don't save Fix iterations to start at 1 instead of 0 Remove training deprecation warnings Bump some scripts.train loglevels * Add ability to refresh preview on demand on pop-up window * Enable refresh of training preview from GUI * Fix Convert Debug logging in Initializers * Fix Preview Tool * Update Legacy TF1 weights to TF2 Catch stats error on loading stats with missing logs * lib.gui.popup_configure - Make more responsive + document * Multiple Outputs supported in trainer Original Model - Mask output bugfix * Make universal inference model for convert Remove scaling from penalized mask loss (now handled at input to y_true) * Fix inference model to work properly with all models * Fix multi-scale output for convert * Fix clipnorm issue with distribution strategies Edit error message on OOM * Update plaidml losses * Add missing file * Disable gmsd loss for plaidnl * PlaidML - Basic training working * clipnorm rewriting for mixed-precision * Inference model creation bugfixes * Remove debug code * Bugfix: Default clipnorm to 1.0 * Remove all mask inputs from training code * Remove mask inputs from convert * GUI - Analysis Tab - Docstrings * Fix rate in totals row * lib.gui - Only update display pages if they have focus * Save the model on first iteration * plaidml - Fix SSIM loss with penalized loss * tools.alignments - Remove manual and fix jobs * GUI - Remove case formatting on help text * gui MultiSelect custom widget - Set default values on init * vgg_face2 - Move to plugins.extract.recognition and use plugins._base base class cli - Add global GPU Exclude Option tools.sort - Use global GPU Exlude option for backend lib.model.session - Exclude all GPUs when running in CPU mode lib.cli.launcher - Set backend to CPU mode when all GPUs excluded * Cascade excluded devices to GPU Stats * Explicit GPU selection for Train and Convert * Reduce Tensorflow Min GPU Multiprocessor Count to 4 * remove compat.v1 code from extract * Force TF to skip mixed precision compatibility check if GPUs have been filtered * Add notes to config for non-working AMD losses * Rasie error if forcing extract to CPU mode * Fix loading of legace dfl-sae weights + dfl-sae typo fix * Remove unused requirements Update sphinx requirements Fix broken rst file locations * docs: lib.gui.display * clipnorm amd condition check * documentation - gui.display_analysis * Documentation - gui.popup_configure * Documentation - lib.logger * Documentation - lib.model.initializers * Documentation - lib.model.layers * Documentation - lib.model.losses * Documentation - lib.model.nn_blocks * Documetation - lib.model.normalization * Documentation - lib.model.session * Documentation - lib.plaidml_stats * Documentation: lib.training_data * Documentation: lib.utils * Documentation: plugins.train.model._base * GUI Stats: prevent stats from using GPU * Documentation - Original Model * Documentation: plugins.model.trainer._base * linting * unit tests: initializers + losses * unit tests: nn_blocks * bugfix - Exclude gpu devices in train, not include * Enable Exclude-Gpus in Extract * Enable exclude gpus in tools * Disallow multiple plugin types in a single model folder * Automatically add exclude_gpus argument in for cpu backends * Cpu backend fixes * Relax optimizer test threshold * Default Train settings - Set mask to Extended * Update Extractor cli help text Update to Python 3.8 * Fix FAN to run on CPU * lib.plaidml_tools - typofix * Linux installer - check for curl * linux installer - typo fix
207 lines
8.9 KiB
Python
207 lines
8.9 KiB
Python
#!/usr/bin python3
|
|
""" Settings manager for Keras Backend """
|
|
|
|
import logging
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
# pylint:disable=no-name-in-module,import-error
|
|
from keras.layers import Activation
|
|
from keras.models import load_model as k_load_model, Model
|
|
|
|
from lib.utils import get_backend
|
|
|
|
logger = logging.getLogger(__name__) # pylint:disable=invalid-name
|
|
|
|
|
|
class KSession():
|
|
""" Handles the settings of backend sessions for inference models.
|
|
|
|
This class acts as a wrapper for various :class:`keras.Model()` functions, ensuring that
|
|
actions performed on a model are handled consistently and can be performed in parallel in
|
|
separate threads.
|
|
|
|
This is an early implementation of this class, and should be expanded out over time
|
|
with relevant `AMD`, `CPU` and `NVIDIA` backend methods.
|
|
|
|
Notes
|
|
-----
|
|
The documentation refers to :mod:`keras`. This is a pseudonym for either :mod:`keras` or
|
|
:mod:`tensorflow.keras` depending on the backend in use.
|
|
|
|
Parameters
|
|
----------
|
|
name: str
|
|
The name of the model that is to be loaded
|
|
model_path: str
|
|
The path to the keras model file
|
|
model_kwargs: dict, optional
|
|
Any kwargs that need to be passed to :func:`keras.models.load_models()`. Default: ``None``
|
|
allow_growth: bool, optional
|
|
Enable the Tensorflow GPU allow_growth configuration option. This option prevents
|
|
Tensorflow from allocating all of the GPU VRAM, but can lead to higher fragmentation and
|
|
slower performance. Default: ``False``
|
|
exclude_gpus: list, optional
|
|
A list of indices correlating to connected GPUs that Tensorflow should not use. Pass
|
|
``None`` to not exclude any GPUs. Default: ``None``
|
|
|
|
"""
|
|
def __init__(self, name, model_path, model_kwargs=None, allow_growth=False, exclude_gpus=None):
|
|
logger.trace("Initializing: %s (name: %s, model_path: %s, model_kwargs: %s, "
|
|
"allow_growth: %s, exclude_gpus)", self.__class__.__name__, name, model_path,
|
|
model_kwargs, allow_growth, exclude_gpus)
|
|
self._name = name
|
|
self._backend = get_backend()
|
|
self._set_session(allow_growth, exclude_gpus)
|
|
self._model_path = model_path
|
|
self._model_kwargs = dict() if not model_kwargs else model_kwargs
|
|
self._model = None
|
|
logger.trace("Initialized: %s", self.__class__.__name__,)
|
|
|
|
def predict(self, feed, batch_size=None):
|
|
""" Get predictions from the model.
|
|
|
|
This method is a wrapper for :func:`keras.predict()` function. For Tensorflow backends
|
|
this is a straight call to the predict function. For PlaidML backends, this attempts
|
|
to optimize the inference batch sizes to reduce the number of kernels that need to be
|
|
compiled.
|
|
|
|
Parameters
|
|
----------
|
|
feed: numpy.ndarray or list
|
|
The feed to be provided to the model as input. This should be a :class:`numpy.ndarray`
|
|
for single inputs or a `list` of :class:`numpy.ndarray` objects for multiple inputs.
|
|
"""
|
|
if self._backend == "amd" and batch_size is not None:
|
|
return self._amd_predict_with_optimized_batchsizes(feed, batch_size)
|
|
return self._model.predict(feed, batch_size=batch_size)
|
|
|
|
def _amd_predict_with_optimized_batchsizes(self, feed, batch_size):
|
|
""" Minimizes the amount of kernels to be compiled when using the ``amd`` backend with
|
|
varying batch sizes while trying to keep the batchsize as high as possible.
|
|
|
|
Parameters
|
|
----------
|
|
feed: numpy.ndarray or list
|
|
The feed to be provided to the model as input. This should be a ``numpy.ndarray``
|
|
for single inputs or a ``list`` of ``numpy.ndarray`` objects for multiple inputs.
|
|
batch_size: int
|
|
The upper batchsize to use.
|
|
"""
|
|
if isinstance(feed, np.ndarray):
|
|
feed = [feed]
|
|
items = feed[0].shape[0]
|
|
done_items = 0
|
|
results = list()
|
|
while done_items < items:
|
|
if batch_size < 4: # Not much difference in BS < 4
|
|
batch_size = 1
|
|
batch_items = ((items - done_items) // batch_size) * batch_size
|
|
if batch_items:
|
|
pred_data = [x[done_items:done_items + batch_items] for x in feed]
|
|
pred = self._model.predict(pred_data, batch_size=batch_size)
|
|
done_items += batch_items
|
|
results.append(pred)
|
|
batch_size //= 2
|
|
if isinstance(results[0], np.ndarray):
|
|
return np.concatenate(results)
|
|
return [np.concatenate(x) for x in zip(*results)]
|
|
|
|
def _set_session(self, allow_growth, exclude_gpus):
|
|
""" Sets the backend session options.
|
|
|
|
For AMD backend this does nothing.
|
|
|
|
For CPU backends, this hides any GPUs from Tensorflow.
|
|
|
|
For Nvidia backends, this hides any GPUs that Tensorflow should not use and applies
|
|
any allow growth settings
|
|
|
|
Parameters
|
|
----------
|
|
allow_growth: bool, optional
|
|
Enable the Tensorflow GPU allow_growth configuration option. This option prevents
|
|
Tensorflow from allocating all of the GPU VRAM, but can lead to higher fragmentation
|
|
and slower performance. Default: False
|
|
exclude_gpus: list, optional
|
|
A list of indices correlating to connected GPUs that Tensorflow should not use. Pass
|
|
``None`` to not exclude any GPUs. Default: ``None``
|
|
"""
|
|
if self._backend == "amd":
|
|
return
|
|
if self._backend == "cpu":
|
|
logger.verbose("Hiding GPUs from Tensorflow")
|
|
tf.config.set_visible_devices([], "GPU")
|
|
return
|
|
|
|
gpus = tf.config.list_physical_devices('GPU')
|
|
if exclude_gpus:
|
|
gpus = [gpu for idx, gpu in enumerate(gpus) if idx not in exclude_gpus]
|
|
logger.debug("Filtering devices to: %s", gpus)
|
|
tf.config.set_visible_devices(gpus, "GPU")
|
|
|
|
if allow_growth:
|
|
for gpu in gpus:
|
|
logger.info("Setting allow growth for GPU: %s", gpu)
|
|
tf.config.experimental.set_memory_growth(gpu, True)
|
|
|
|
def load_model(self):
|
|
""" Loads a model.
|
|
|
|
This method is a wrapper for :func:`keras.models.load_model()`. Loads a model and its
|
|
weights from :attr:`model_path` defined during initialization of this class. Any additional
|
|
``kwargs`` to be passed to :func:`keras.models.load_model()` should also be defined during
|
|
initialization of the class.
|
|
|
|
For Tensorflow backends, the `make_predict_function` method is called on the model to make
|
|
it thread safe.
|
|
"""
|
|
logger.verbose("Initializing plugin model: %s", self._name)
|
|
self._model = k_load_model(self._model_path, compile=False, **self._model_kwargs)
|
|
if self._backend != "amd":
|
|
self._model.make_predict_function()
|
|
|
|
def define_model(self, function):
|
|
""" Defines a model from the given function.
|
|
|
|
This method acts as a wrapper for :class:`keras.models.Model()`.
|
|
|
|
Parameters
|
|
----------
|
|
function: function
|
|
A function that defines a :class:`keras.Model` and returns it's ``inputs`` and
|
|
``outputs``. The function that generates these results should be passed in, NOT the
|
|
results themselves, as the function needs to be executed within the correct context.
|
|
"""
|
|
self._model = Model(*function())
|
|
|
|
def load_model_weights(self):
|
|
""" Load model weights for a defined model inside the correct session.
|
|
|
|
This method is a wrapper for :class:`keras.load_weights()`. Once a model has been defined
|
|
in :func:`define_model()` this method can be called to load its weights from the
|
|
:attr:`model_path` defined during initialization of this class.
|
|
|
|
For Tensorflow backends, the `make_predict_function` method is called on the model to make
|
|
it thread safe.
|
|
"""
|
|
logger.verbose("Initializing plugin model: %s", self._name)
|
|
self._model.load_weights(self._model_path)
|
|
if self._backend != "amd":
|
|
self._model.make_predict_function()
|
|
|
|
def append_softmax_activation(self, layer_index=-1):
|
|
""" Append a softmax activation layer to a model
|
|
|
|
Occasionally a softmax activation layer needs to be added to a model's output.
|
|
This is a convenience function to append this layer to the loaded model.
|
|
|
|
Parameters
|
|
----------
|
|
layer_index: int, optional
|
|
The layer index of the model to select the output from to use as an input to the
|
|
softmax activation layer. Default: `-1` (The final layer of the model)
|
|
"""
|
|
logger.debug("Appending Softmax Activation to model: (layer_index: %s)", layer_index)
|
|
softmax = Activation("softmax", name="softmax")(self._model.layers[layer_index].output)
|
|
self._model = Model(inputs=self._model.input, outputs=[softmax])
|