mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 20:13:52 -04:00
* Core Updates - Remove lib.utils.keras_backend_quiet and replace with get_backend() where relevant - Document lib.gpu_stats and lib.sys_info - Remove call to GPUStats.is_plaidml from convert and replace with get_backend() - lib.gui.menu - typofix * Update Dependencies Bump Tensorflow Version Check * Port extraction to tf2 * Add custom import finder for loading Keras or tf.keras depending on backend * Add `tensorflow` to KerasFinder search path * Basic TF2 training running * model.initializers - docstring fix * Fix and pass tests for tf2 * Replace Keras backend tests with faceswap backend tests * Initial optimizers update * Monkey patch tf.keras optimizer * Remove custom Adam Optimizers and Memory Saving Gradients * Remove multi-gpu option. Add Distribution to cli * plugins.train.model._base: Add Mirror, Central and Default distribution strategies * Update tensorboard kwargs for tf2 * Penalized Loss - Fix for TF2 and AMD * Fix syntax for tf2.1 * requirements typo fix * Explicit None for clipnorm if using a distribution strategy * Fix penalized loss for distribution strategies * Update Dlight * typo fix * Pin to TF2.2 * setup.py - Install tensorflow from pip if not available in Conda * Add reduction options and set default for mirrored distribution strategy * Explicitly use default strategy rather than nullcontext * lib.model.backup_restore documentation * Remove mirrored strategy reduction method and default based on OS * Initial restructure - training * Remove PingPong Start model.base refactor * Model saving and resuming enabled * More tidying up of model.base * Enable backup and snapshotting * Re-enable state file Remove loss names from state file Fix print loss function Set snapshot iterations correctly * Revert original model to Keras Model structure rather than custom layer Output full model and sub model summary Change NNBlocks to callables rather than custom keras layers * Apply custom Conv2D layer * Finalize NNBlock restructure Update Dfaker blocks * Fix reloading model under a different distribution strategy * Pass command line arguments through to trainer * Remove training_opts from model and reference params directly * Tidy up model __init__ * Re-enable tensorboard logging Suppress "Model Not Compiled" warning * Fix timelapse * lib.model.nnblocks - Bugfix residual block Port dfaker bugfix original * dfl-h128 ported * DFL SAE ported * IAE Ported * dlight ported * port lightweight * realface ported * unbalanced ported * villain ported * lib.cli.args - Update Batchsize + move allow_growth to config * Remove output shape definition Get image sizes per side rather than globally * Strip mask input from encoder * Fix learn mask and output learned mask to preview * Trigger Allow Growth prior to setting strategy * Fix GUI Graphing * GUI - Display batchsize correctly + fix training graphs * Fix penalized loss * Enable mixed precision training * Update analysis displayed batch to match input * Penalized Loss - Multi-GPU Fix * Fix all losses for TF2 * Fix Reflect Padding * Allow different input size for each side of the model * Fix conv-aware initialization on reload * Switch allow_growth order * Move mixed_precision to cli * Remove distrubution strategies * Compile penalized loss sub-function into LossContainer * Bump default save interval to 250 Generate preview on first iteration but don't save Fix iterations to start at 1 instead of 0 Remove training deprecation warnings Bump some scripts.train loglevels * Add ability to refresh preview on demand on pop-up window * Enable refresh of training preview from GUI * Fix Convert Debug logging in Initializers * Fix Preview Tool * Update Legacy TF1 weights to TF2 Catch stats error on loading stats with missing logs * lib.gui.popup_configure - Make more responsive + document * Multiple Outputs supported in trainer Original Model - Mask output bugfix * Make universal inference model for convert Remove scaling from penalized mask loss (now handled at input to y_true) * Fix inference model to work properly with all models * Fix multi-scale output for convert * Fix clipnorm issue with distribution strategies Edit error message on OOM * Update plaidml losses * Add missing file * Disable gmsd loss for plaidnl * PlaidML - Basic training working * clipnorm rewriting for mixed-precision * Inference model creation bugfixes * Remove debug code * Bugfix: Default clipnorm to 1.0 * Remove all mask inputs from training code * Remove mask inputs from convert * GUI - Analysis Tab - Docstrings * Fix rate in totals row * lib.gui - Only update display pages if they have focus * Save the model on first iteration * plaidml - Fix SSIM loss with penalized loss * tools.alignments - Remove manual and fix jobs * GUI - Remove case formatting on help text * gui MultiSelect custom widget - Set default values on init * vgg_face2 - Move to plugins.extract.recognition and use plugins._base base class cli - Add global GPU Exclude Option tools.sort - Use global GPU Exlude option for backend lib.model.session - Exclude all GPUs when running in CPU mode lib.cli.launcher - Set backend to CPU mode when all GPUs excluded * Cascade excluded devices to GPU Stats * Explicit GPU selection for Train and Convert * Reduce Tensorflow Min GPU Multiprocessor Count to 4 * remove compat.v1 code from extract * Force TF to skip mixed precision compatibility check if GPUs have been filtered * Add notes to config for non-working AMD losses * Rasie error if forcing extract to CPU mode * Fix loading of legace dfl-sae weights + dfl-sae typo fix * Remove unused requirements Update sphinx requirements Fix broken rst file locations * docs: lib.gui.display * clipnorm amd condition check * documentation - gui.display_analysis * Documentation - gui.popup_configure * Documentation - lib.logger * Documentation - lib.model.initializers * Documentation - lib.model.layers * Documentation - lib.model.losses * Documentation - lib.model.nn_blocks * Documetation - lib.model.normalization * Documentation - lib.model.session * Documentation - lib.plaidml_stats * Documentation: lib.training_data * Documentation: lib.utils * Documentation: plugins.train.model._base * GUI Stats: prevent stats from using GPU * Documentation - Original Model * Documentation: plugins.model.trainer._base * linting * unit tests: initializers + losses * unit tests: nn_blocks * bugfix - Exclude gpu devices in train, not include * Enable Exclude-Gpus in Extract * Enable exclude gpus in tools * Disallow multiple plugin types in a single model folder * Automatically add exclude_gpus argument in for cpu backends * Cpu backend fixes * Relax optimizer test threshold * Default Train settings - Set mask to Extended * Update Extractor cli help text Update to Python 3.8 * Fix FAN to run on CPU * lib.plaidml_tools - typofix * Linux installer - check for curl * linux installer - typo fix
197 lines
7.6 KiB
Python
197 lines
7.6 KiB
Python
#!/usr/bin/env python3
|
|
""" Normalization methods for faceswap.py. """
|
|
|
|
import sys
|
|
import inspect
|
|
|
|
from keras.layers import Layer, InputSpec
|
|
from keras import initializers, regularizers, constraints
|
|
from keras import backend as K
|
|
from keras.utils import get_custom_objects
|
|
|
|
|
|
class InstanceNormalization(Layer):
|
|
"""Instance normalization layer (Lei Ba et al, 2016, Ulyanov et al., 2016).
|
|
|
|
Normalize the activations of the previous layer at each step, i.e. applies a transformation
|
|
that maintains the mean activation close to 0 and the activation standard deviation close to 1.
|
|
|
|
Parameters
|
|
----------
|
|
axis: int, optional
|
|
The axis that should be normalized (typically the features axis). For instance, after a
|
|
`Conv2D` layer with `data_format="channels_first"`, set `axis=1` in
|
|
:class:`InstanceNormalization`. Setting `axis=None` will normalize all values in each
|
|
instance of the batch. Axis 0 is the batch dimension. `axis` cannot be set to 0 to avoid
|
|
errors. Default: ``None``
|
|
epsilon: float, optional
|
|
Small float added to variance to avoid dividing by zero. Default: `1e-3`
|
|
center: bool, optional
|
|
If ``True``, add offset of `beta` to normalized tensor. If ``False``, `beta` is ignored.
|
|
Default: ``True``
|
|
scale: bool, optional
|
|
If ``True``, multiply by `gamma`. If ``False``, `gamma` is not used. When the next layer
|
|
is linear (also e.g. `relu`), this can be disabled since the scaling will be done by
|
|
the next layer. Default: ``True``
|
|
beta_initializer: str, optional
|
|
Initializer for the beta weight. Default: `"zeros"`
|
|
gamma_initializer: str, optional
|
|
Initializer for the gamma weight. Default: `"ones"`
|
|
beta_regularizer: str, optional
|
|
Optional regularizer for the beta weight. Default: ``None``
|
|
gamma_regularizer: str, optional
|
|
Optional regularizer for the gamma weight. Default: ``None``
|
|
beta_constraint: float, optional
|
|
Optional constraint for the beta weight. Default: ``None``
|
|
gamma_constraint: float, optional
|
|
Optional constraint for the gamma weight. Default: ``None``
|
|
|
|
References
|
|
----------
|
|
- Layer Normalization - https://arxiv.org/abs/1607.06450
|
|
|
|
- Instance Normalization: The Missing Ingredient for Fast Stylization - \
|
|
https://arxiv.org/abs/1607.08022
|
|
"""
|
|
def __init__(self,
|
|
axis=None,
|
|
epsilon=1e-3,
|
|
center=True,
|
|
scale=True,
|
|
beta_initializer="zeros",
|
|
gamma_initializer="ones",
|
|
beta_regularizer=None,
|
|
gamma_regularizer=None,
|
|
beta_constraint=None,
|
|
gamma_constraint=None,
|
|
**kwargs):
|
|
self.beta = None
|
|
self.gamma = None
|
|
super().__init__(**kwargs)
|
|
self.supports_masking = True
|
|
self.axis = axis
|
|
self.epsilon = epsilon
|
|
self.center = center
|
|
self.scale = scale
|
|
self.beta_initializer = initializers.get(beta_initializer)
|
|
self.gamma_initializer = initializers.get(gamma_initializer)
|
|
self.beta_regularizer = regularizers.get(beta_regularizer)
|
|
self.gamma_regularizer = regularizers.get(gamma_regularizer)
|
|
self.beta_constraint = constraints.get(beta_constraint)
|
|
self.gamma_constraint = constraints.get(gamma_constraint)
|
|
|
|
def build(self, input_shape):
|
|
"""Creates the layer weights.
|
|
|
|
Must be implemented on all layers that have weights.
|
|
|
|
Parameters
|
|
----------
|
|
input_shape: tensor
|
|
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
|
|
reference for weight shape computations.
|
|
"""
|
|
ndim = len(input_shape)
|
|
if self.axis == 0:
|
|
raise ValueError("Axis cannot be zero")
|
|
|
|
if (self.axis is not None) and (ndim == 2):
|
|
raise ValueError("Cannot specify axis for rank 1 tensor")
|
|
|
|
self.input_spec = InputSpec(ndim=ndim)
|
|
|
|
if self.axis is None:
|
|
shape = (1,)
|
|
else:
|
|
shape = (input_shape[self.axis],)
|
|
|
|
if self.scale:
|
|
self.gamma = self.add_weight(shape=shape,
|
|
name="gamma",
|
|
initializer=self.gamma_initializer,
|
|
regularizer=self.gamma_regularizer,
|
|
constraint=self.gamma_constraint)
|
|
else:
|
|
self.gamma = None
|
|
if self.center:
|
|
self.beta = self.add_weight(shape=shape,
|
|
name="beta",
|
|
initializer=self.beta_initializer,
|
|
regularizer=self.beta_regularizer,
|
|
constraint=self.beta_constraint)
|
|
else:
|
|
self.beta = None
|
|
self.built = True
|
|
|
|
def call(self, inputs, training=None): # pylint:disable=arguments-differ,unused-argument
|
|
"""This is where the layer's logic lives.
|
|
|
|
Parameters
|
|
----------
|
|
inputs: tensor
|
|
Input tensor, or list/tuple of input tensors
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
A tensor or list/tuple of tensors
|
|
"""
|
|
input_shape = K.int_shape(inputs)
|
|
reduction_axes = list(range(0, len(input_shape)))
|
|
|
|
if self.axis is not None:
|
|
del reduction_axes[self.axis]
|
|
|
|
del reduction_axes[0]
|
|
|
|
mean = K.mean(inputs, reduction_axes, keepdims=True)
|
|
stddev = K.std(inputs, reduction_axes, keepdims=True) + self.epsilon
|
|
normed = (inputs - mean) / stddev
|
|
|
|
broadcast_shape = [1] * len(input_shape)
|
|
if self.axis is not None:
|
|
broadcast_shape[self.axis] = input_shape[self.axis]
|
|
|
|
if self.scale:
|
|
broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
|
|
normed = normed * broadcast_gamma
|
|
if self.center:
|
|
broadcast_beta = K.reshape(self.beta, broadcast_shape)
|
|
normed = normed + broadcast_beta
|
|
return normed
|
|
|
|
def get_config(self):
|
|
"""Returns the config of the layer.
|
|
|
|
A layer config is a Python dictionary (serializable) containing the configuration of a
|
|
layer. The same layer can be reinstated later (without its trained weights) from this
|
|
configuration.
|
|
|
|
The configuration of a layer does not include connectivity information, nor the layer
|
|
class name. These are handled by `Network` (one layer of abstraction above).
|
|
|
|
Returns
|
|
--------
|
|
dict
|
|
A python dictionary containing the layer configuration
|
|
"""
|
|
config = {
|
|
"axis": self.axis,
|
|
"epsilon": self.epsilon,
|
|
"center": self.center,
|
|
"scale": self.scale,
|
|
"beta_initializer": initializers.serialize(self.beta_initializer),
|
|
"gamma_initializer": initializers.serialize(self.gamma_initializer),
|
|
"beta_regularizer": regularizers.serialize(self.beta_regularizer),
|
|
"gamma_regularizer": regularizers.serialize(self.gamma_regularizer),
|
|
"beta_constraint": constraints.serialize(self.beta_constraint),
|
|
"gamma_constraint": constraints.serialize(self.gamma_constraint)
|
|
}
|
|
base_config = super(InstanceNormalization, self).get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
|
|
# Update normalization into Keras custom objects
|
|
for name, obj in inspect.getmembers(sys.modules[__name__]):
|
|
if inspect.isclass(obj) and obj.__module__ == __name__:
|
|
get_custom_objects().update({name: obj})
|