mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 20:13:52 -04:00
* Core Updates - Remove lib.utils.keras_backend_quiet and replace with get_backend() where relevant - Document lib.gpu_stats and lib.sys_info - Remove call to GPUStats.is_plaidml from convert and replace with get_backend() - lib.gui.menu - typofix * Update Dependencies Bump Tensorflow Version Check * Port extraction to tf2 * Add custom import finder for loading Keras or tf.keras depending on backend * Add `tensorflow` to KerasFinder search path * Basic TF2 training running * model.initializers - docstring fix * Fix and pass tests for tf2 * Replace Keras backend tests with faceswap backend tests * Initial optimizers update * Monkey patch tf.keras optimizer * Remove custom Adam Optimizers and Memory Saving Gradients * Remove multi-gpu option. Add Distribution to cli * plugins.train.model._base: Add Mirror, Central and Default distribution strategies * Update tensorboard kwargs for tf2 * Penalized Loss - Fix for TF2 and AMD * Fix syntax for tf2.1 * requirements typo fix * Explicit None for clipnorm if using a distribution strategy * Fix penalized loss for distribution strategies * Update Dlight * typo fix * Pin to TF2.2 * setup.py - Install tensorflow from pip if not available in Conda * Add reduction options and set default for mirrored distribution strategy * Explicitly use default strategy rather than nullcontext * lib.model.backup_restore documentation * Remove mirrored strategy reduction method and default based on OS * Initial restructure - training * Remove PingPong Start model.base refactor * Model saving and resuming enabled * More tidying up of model.base * Enable backup and snapshotting * Re-enable state file Remove loss names from state file Fix print loss function Set snapshot iterations correctly * Revert original model to Keras Model structure rather than custom layer Output full model and sub model summary Change NNBlocks to callables rather than custom keras layers * Apply custom Conv2D layer * Finalize NNBlock restructure Update Dfaker blocks * Fix reloading model under a different distribution strategy * Pass command line arguments through to trainer * Remove training_opts from model and reference params directly * Tidy up model __init__ * Re-enable tensorboard logging Suppress "Model Not Compiled" warning * Fix timelapse * lib.model.nnblocks - Bugfix residual block Port dfaker bugfix original * dfl-h128 ported * DFL SAE ported * IAE Ported * dlight ported * port lightweight * realface ported * unbalanced ported * villain ported * lib.cli.args - Update Batchsize + move allow_growth to config * Remove output shape definition Get image sizes per side rather than globally * Strip mask input from encoder * Fix learn mask and output learned mask to preview * Trigger Allow Growth prior to setting strategy * Fix GUI Graphing * GUI - Display batchsize correctly + fix training graphs * Fix penalized loss * Enable mixed precision training * Update analysis displayed batch to match input * Penalized Loss - Multi-GPU Fix * Fix all losses for TF2 * Fix Reflect Padding * Allow different input size for each side of the model * Fix conv-aware initialization on reload * Switch allow_growth order * Move mixed_precision to cli * Remove distrubution strategies * Compile penalized loss sub-function into LossContainer * Bump default save interval to 250 Generate preview on first iteration but don't save Fix iterations to start at 1 instead of 0 Remove training deprecation warnings Bump some scripts.train loglevels * Add ability to refresh preview on demand on pop-up window * Enable refresh of training preview from GUI * Fix Convert Debug logging in Initializers * Fix Preview Tool * Update Legacy TF1 weights to TF2 Catch stats error on loading stats with missing logs * lib.gui.popup_configure - Make more responsive + document * Multiple Outputs supported in trainer Original Model - Mask output bugfix * Make universal inference model for convert Remove scaling from penalized mask loss (now handled at input to y_true) * Fix inference model to work properly with all models * Fix multi-scale output for convert * Fix clipnorm issue with distribution strategies Edit error message on OOM * Update plaidml losses * Add missing file * Disable gmsd loss for plaidnl * PlaidML - Basic training working * clipnorm rewriting for mixed-precision * Inference model creation bugfixes * Remove debug code * Bugfix: Default clipnorm to 1.0 * Remove all mask inputs from training code * Remove mask inputs from convert * GUI - Analysis Tab - Docstrings * Fix rate in totals row * lib.gui - Only update display pages if they have focus * Save the model on first iteration * plaidml - Fix SSIM loss with penalized loss * tools.alignments - Remove manual and fix jobs * GUI - Remove case formatting on help text * gui MultiSelect custom widget - Set default values on init * vgg_face2 - Move to plugins.extract.recognition and use plugins._base base class cli - Add global GPU Exclude Option tools.sort - Use global GPU Exlude option for backend lib.model.session - Exclude all GPUs when running in CPU mode lib.cli.launcher - Set backend to CPU mode when all GPUs excluded * Cascade excluded devices to GPU Stats * Explicit GPU selection for Train and Convert * Reduce Tensorflow Min GPU Multiprocessor Count to 4 * remove compat.v1 code from extract * Force TF to skip mixed precision compatibility check if GPUs have been filtered * Add notes to config for non-working AMD losses * Rasie error if forcing extract to CPU mode * Fix loading of legace dfl-sae weights + dfl-sae typo fix * Remove unused requirements Update sphinx requirements Fix broken rst file locations * docs: lib.gui.display * clipnorm amd condition check * documentation - gui.display_analysis * Documentation - gui.popup_configure * Documentation - lib.logger * Documentation - lib.model.initializers * Documentation - lib.model.layers * Documentation - lib.model.losses * Documentation - lib.model.nn_blocks * Documetation - lib.model.normalization * Documentation - lib.model.session * Documentation - lib.plaidml_stats * Documentation: lib.training_data * Documentation: lib.utils * Documentation: plugins.train.model._base * GUI Stats: prevent stats from using GPU * Documentation - Original Model * Documentation: plugins.model.trainer._base * linting * unit tests: initializers + losses * unit tests: nn_blocks * bugfix - Exclude gpu devices in train, not include * Enable Exclude-Gpus in Extract * Enable exclude gpus in tools * Disallow multiple plugin types in a single model folder * Automatically add exclude_gpus argument in for cpu backends * Cpu backend fixes * Relax optimizer test threshold * Default Train settings - Set mask to Extended * Update Extractor cli help text Update to Python 3.8 * Fix FAN to run on CPU * lib.plaidml_tools - typofix * Linux installer - check for curl * linux installer - typo fix
322 lines
11 KiB
Python
322 lines
11 KiB
Python
#!/usr/bin/env python3
|
|
""" Custom Initializers for faceswap.py """
|
|
|
|
import logging
|
|
import sys
|
|
import inspect
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from keras import backend as K
|
|
from keras import initializers
|
|
from keras.utils import get_custom_objects
|
|
|
|
from lib.utils import get_backend
|
|
|
|
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
def compute_fans(shape, data_format='channels_last'):
|
|
"""Computes the number of input and output units for a weight shape.
|
|
|
|
Ported directly from Keras as the location moves between keras and tensorflow-keras
|
|
|
|
Parameters
|
|
----------
|
|
shape: tuple
|
|
shape tuple of integers
|
|
data_format: str
|
|
Image data format to use for convolution kernels. Note that all kernels in Keras are
|
|
standardized on the `"channels_last"` ordering (even when inputs are set to
|
|
`"channels_first"`).
|
|
|
|
Returns
|
|
-------
|
|
tuple
|
|
A tuple of scalars, `(fan_in, fan_out)`.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
In case of invalid `data_format` argument.
|
|
"""
|
|
if len(shape) == 2:
|
|
fan_in = shape[0]
|
|
fan_out = shape[1]
|
|
elif len(shape) in {3, 4, 5}:
|
|
# Assuming convolution kernels (1D, 2D or 3D).
|
|
# Theano kernel shape: (depth, input_depth, ...)
|
|
# Tensorflow kernel shape: (..., input_depth, depth)
|
|
if data_format == 'channels_first':
|
|
receptive_field_size = np.prod(shape[2:])
|
|
fan_in = shape[1] * receptive_field_size
|
|
fan_out = shape[0] * receptive_field_size
|
|
elif data_format == 'channels_last':
|
|
receptive_field_size = np.prod(shape[:-2])
|
|
fan_in = shape[-2] * receptive_field_size
|
|
fan_out = shape[-1] * receptive_field_size
|
|
else:
|
|
raise ValueError('Invalid data_format: ' + data_format)
|
|
else:
|
|
# No specific assumptions.
|
|
fan_in = np.sqrt(np.prod(shape))
|
|
fan_out = np.sqrt(np.prod(shape))
|
|
return fan_in, fan_out
|
|
|
|
|
|
class ICNR(initializers.Initializer): # pylint: disable=invalid-name
|
|
""" ICNR initializer for checkerboard artifact free sub pixel convolution
|
|
|
|
Parameters
|
|
----------
|
|
initializer: :class:`keras.initializers.Initializer`
|
|
The initializer used for sub kernels (orthogonal, glorot uniform, etc.)
|
|
scale: int, optional
|
|
scaling factor of sub pixel convolution (up sampling from 8x8 to 16x16 is scale 2).
|
|
Default: `2`
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The modified kernel weights
|
|
|
|
Example
|
|
-------
|
|
>>> x = conv2d(... weights_initializer=ICNR(initializer=he_uniform(), scale=2))
|
|
|
|
References
|
|
----------
|
|
Andrew Aitken et al. Checkerboard artifact free sub-pixel convolution
|
|
https://arxiv.org/pdf/1707.02937.pdf, https://distill.pub/2016/deconv-checkerboard/
|
|
"""
|
|
|
|
def __init__(self, initializer, scale=2):
|
|
self.scale = scale
|
|
self.initializer = initializer
|
|
|
|
def __call__(self, shape, dtype="float32"):
|
|
""" Call function for the ICNR initializer.
|
|
|
|
Parameters
|
|
----------
|
|
shape: tuple or list
|
|
The required resized shape for the output tensor
|
|
dtype: str
|
|
The data type for the tensor
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The modified kernel weights
|
|
"""
|
|
shape = list(shape)
|
|
if self.scale == 1:
|
|
return self.initializer(shape)
|
|
new_shape = shape[:3] + [shape[3] // (self.scale ** 2)]
|
|
if isinstance(self.initializer, dict):
|
|
self.initializer = initializers.deserialize(self.initializer)
|
|
var_x = self.initializer(new_shape, dtype)
|
|
var_x = K.permute_dimensions(var_x, [2, 0, 1, 3])
|
|
var_x = K.resize_images(var_x,
|
|
self.scale,
|
|
self.scale,
|
|
"channels_last",
|
|
interpolation="nearest")
|
|
var_x = self._space_to_depth(var_x)
|
|
var_x = K.permute_dimensions(var_x, [1, 2, 0, 3])
|
|
logger.debug("Output shape: %s", var_x.shape)
|
|
return var_x
|
|
|
|
def _space_to_depth(self, input_tensor):
|
|
""" Space to depth implementation.
|
|
|
|
PlaidML does not have a space to depth operation, so calculate if backend is amd
|
|
otherwise returns the :func:`tensorflow.space_to_depth` operation.
|
|
|
|
Parameters
|
|
----------
|
|
input_tensor: tensor
|
|
The tensor to be manipulated
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The manipulated input tensor
|
|
"""
|
|
if get_backend() == "amd":
|
|
batch, height, width, depth = input_tensor.shape.dims
|
|
new_height = height // self.scale
|
|
new_width = width // self.scale
|
|
reshaped = K.reshape(input_tensor,
|
|
(batch, new_height, self.scale, new_width, self.scale, depth))
|
|
retval = K.reshape(K.permute_dimensions(reshaped, [0, 1, 3, 2, 4, 5]),
|
|
(batch, new_height, new_width, -1))
|
|
else:
|
|
retval = tf.nn.space_to_depth(input_tensor, block_size=self.scale, data_format="NHWC")
|
|
logger.debug("Input shape: %s, Output shape: %s", input_tensor.shape, retval.shape)
|
|
return retval
|
|
|
|
def get_config(self):
|
|
""" Return the ICNR Initializer configuration.
|
|
|
|
Returns
|
|
-------
|
|
dict
|
|
The configuration for ICNR Initialization
|
|
"""
|
|
config = {"scale": self.scale,
|
|
"initializer": self.initializer
|
|
}
|
|
base_config = super(ICNR, self).get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
|
|
class ConvolutionAware(initializers.Initializer):
|
|
"""
|
|
Initializer that generates orthogonal convolution filters in the Fourier space. If this
|
|
initializer is passed a shape that is not 3D or 4D, orthogonal initialization will be used.
|
|
|
|
Adapted, fixed and optimized from:
|
|
https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/initializers/convaware.py
|
|
|
|
Parameters
|
|
----------
|
|
eps_std: float, optional
|
|
The Standard deviation for the random normal noise used to break symmetry in the inverse
|
|
Fourier transform. Default: 0.05
|
|
seed: int, optional
|
|
Used to seed the random generator. Default: ``None``
|
|
initialized: bool, optional
|
|
This should always be set to ``False``. To avoid Keras re-calculating the values every time
|
|
the model is loaded, this parameter is internally set on first time initialization.
|
|
Default:``False``
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The modified kernel weights
|
|
|
|
References
|
|
----------
|
|
Armen Aghajanyan, https://arxiv.org/abs/1702.06295
|
|
"""
|
|
|
|
def __init__(self, eps_std=0.05, seed=None, initialized=False):
|
|
self.eps_std = eps_std
|
|
self.seed = seed
|
|
self.orthogonal = initializers.Orthogonal()
|
|
self.he_uniform = initializers.he_uniform()
|
|
self.initialized = initialized
|
|
|
|
def __call__(self, shape, dtype=None):
|
|
""" Call function for the ICNR initializer.
|
|
|
|
Parameters
|
|
----------
|
|
shape: tuple or list
|
|
The required shape for the output tensor
|
|
dtype: str
|
|
The data type for the tensor
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
The modified kernel weights
|
|
"""
|
|
# TODO Tensorflow appears to pass in a :class:`tensorflow.python.framework.dtypes.DType`
|
|
# object which causes this to error, so currently just reverts to default dtype if a string
|
|
# is not passed in.
|
|
if self.initialized: # Avoid re-calculating initializer when loading a saved model
|
|
return self.he_uniform(shape, dtype=dtype)
|
|
dtype = K.floatx() if not isinstance(dtype, str) else dtype
|
|
logger.info("Calculating Convolution Aware Initializer for shape: %s", shape)
|
|
rank = len(shape)
|
|
if self.seed is not None:
|
|
np.random.seed(self.seed)
|
|
|
|
fan_in, _ = compute_fans(shape) # pylint:disable=protected-access
|
|
variance = 2 / fan_in
|
|
|
|
if rank == 3:
|
|
row, stack_size, filters_size = shape
|
|
|
|
transpose_dimensions = (2, 1, 0)
|
|
kernel_shape = (row,)
|
|
correct_ifft = lambda shape, s=[None]: np.fft.irfft(shape, s[0]) # noqa
|
|
correct_fft = np.fft.rfft
|
|
|
|
elif rank == 4:
|
|
row, column, stack_size, filters_size = shape
|
|
|
|
transpose_dimensions = (2, 3, 1, 0)
|
|
kernel_shape = (row, column)
|
|
correct_ifft = np.fft.irfft2
|
|
correct_fft = np.fft.rfft2
|
|
|
|
elif rank == 5:
|
|
var_x, var_y, var_z, stack_size, filters_size = shape
|
|
|
|
transpose_dimensions = (3, 4, 0, 1, 2)
|
|
kernel_shape = (var_x, var_y, var_z)
|
|
correct_fft = np.fft.rfftn
|
|
correct_ifft = np.fft.irfftn
|
|
|
|
else:
|
|
self.initialized = True
|
|
return K.variable(self.orthogonal(shape), dtype=dtype)
|
|
|
|
kernel_fourier_shape = correct_fft(np.zeros(kernel_shape)).shape
|
|
|
|
basis = self._create_basis(filters_size, stack_size, np.prod(kernel_fourier_shape), dtype)
|
|
basis = basis.reshape((filters_size, stack_size,) + kernel_fourier_shape)
|
|
randoms = np.random.normal(0, self.eps_std, basis.shape[:-2] + kernel_shape)
|
|
init = correct_ifft(basis, kernel_shape) + randoms
|
|
init = self._scale_filters(init, variance)
|
|
self.initialized = True
|
|
return K.variable(init.transpose(transpose_dimensions), dtype=dtype, name="conv_aware")
|
|
|
|
def _create_basis(self, filters_size, filters, size, dtype):
|
|
""" Create the basis for convolutional aware initialization """
|
|
logger.debug("filters_size: %s, filters: %s, size: %s, dtype: %s",
|
|
filters_size, filters, size, dtype)
|
|
if size == 1:
|
|
return np.random.normal(0.0, self.eps_std, (filters_size, filters, size))
|
|
nbb = filters // size + 1
|
|
var_a = np.random.normal(0.0, 1.0, (filters_size, nbb, size, size))
|
|
var_a = self._symmetrize(var_a)
|
|
var_u = np.linalg.svd(var_a)[0].transpose(0, 1, 3, 2)
|
|
var_p = np.reshape(var_u, (filters_size, nbb * size, size))[:, :filters, :].astype(dtype)
|
|
return var_p
|
|
|
|
@staticmethod
|
|
def _symmetrize(var_a):
|
|
""" Make the given tensor symmetrical. """
|
|
var_b = np.transpose(var_a, axes=(0, 1, 3, 2))
|
|
diag = var_a.diagonal(axis1=2, axis2=3)
|
|
var_c = np.array([[np.diag(arr) for arr in batch] for batch in diag])
|
|
return var_a + var_b - var_c
|
|
|
|
@staticmethod
|
|
def _scale_filters(filters, variance):
|
|
""" Scale the given filters. """
|
|
c_var = np.var(filters)
|
|
var_p = np.sqrt(variance / c_var)
|
|
return filters * var_p
|
|
|
|
def get_config(self):
|
|
""" Return the Convolutional Aware Initializer configuration.
|
|
|
|
Returns
|
|
-------
|
|
dict
|
|
The configuration for ICNR Initialization
|
|
"""
|
|
return dict(eps_std=self.eps_std,
|
|
seed=self.seed,
|
|
initialized=self.initialized)
|
|
|
|
|
|
# Update initializers into Keras custom objects
|
|
for name, obj in inspect.getmembers(sys.modules[__name__]):
|
|
if inspect.isclass(obj) and obj.__module__ == __name__:
|
|
get_custom_objects().update({name: obj})
|