1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:37:19 -04:00
faceswap/scripts/train.py
torzdf cd00859c40
model_refactor (#571) (#572)
* model_refactor (#571)

* original model to new structure

* IAE model to new structure

* OriginalHiRes to new structure

* Fix trainer for different resolutions

* Initial config implementation

* Configparse library added

* improved training data loader

* dfaker model working

* Add logging to training functions

* Non blocking input for cli training

* Add error handling to threads. Add non-mp queues to queue_handler

* Improved Model Building and NNMeta

* refactor lib/models

* training refactor. DFL H128 model Implementation

* Dfaker - use hashes

* Move timelapse. Remove perceptual loss arg

* Update INSTALL.md. Add logger formatting. Update Dfaker training

* DFL h128 partially ported

* Add mask to dfaker (#573)

* Remove old models. Add mask to dfaker

* dfl mask. Make masks selectable in config (#575)

* DFL H128 Mask. Mask type selectable in config.

* remove gan_v2_2

* Creating Input Size config for models

Creating Input Size config for models

Will be used downstream in converters.

Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes)

* Add mask loss options to config

* MTCNN options to config.ini. Remove GAN config. Update USAGE.md

* Add sliders for numerical values in GUI

* Add config plugins menu to gui. Validate config

* Only backup model if loss has dropped. Get training working again

* bugfixes

* Standardise loss printing

* GUI idle cpu fixes. Graph loss fix.

* mutli-gpu logging bugfix

* Merge branch 'staging' into train_refactor

* backup state file

* Crash protection: Only backup if both total losses have dropped

* Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes)

* Load and save model structure with weights

* Slight code update

* Improve config loader. Add subpixel opt to all models. Config to state

* Show samples... wrong input

* Remove AE topology. Add input/output shapes to State

* Port original_villain (birb/VillainGuy) model to faceswap

* Add plugin info to GUI config pages

* Load input shape from state. IAE Config options.

* Fix transform_kwargs.
Coverage to ratio.
Bugfix mask detection

* Suppress keras userwarnings.
Automate zoom.
Coverage_ratio to model def.

* Consolidation of converters & refactor (#574)

* Consolidation of converters & refactor

Initial Upload of alpha

Items
- consolidate convert_mased & convert_adjust into one converter
-add average color adjust to convert_masked
-allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size
-allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size
-eliminate redundant type conversions to avoid multiple round-off errors
-refactor loops for vectorization/speed
-reorganize for clarity & style changes

TODO
- bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now
- issues with mask border giving black ring at zero erosion .. investigate
- remove GAN ??
- test enlargment factors of umeyama standard face .. match to coverage factor
- make enlargment factor a model parameter
- remove convert_adjusted and referencing code when finished

* Update Convert_Masked.py

default blur size of 2 to match original...
description of enlargement tests
breakout matrxi scaling into def

* Enlargment scale as a cli parameter

* Update cli.py

* dynamic interpolation algorithm

Compute x & y scale factors from the affine matrix on the fly by QR decomp.
Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image

* input size
input size from config

* fix issues with <1.0 erosion

* Update convert.py

* Update Convert_Adjust.py

more work on the way to merginf

* Clean up help note on sharpen

* cleanup seamless

* Delete Convert_Adjust.py

* Update umeyama.py

* Update training_data.py

* swapping

* segmentation stub

* changes to convert.str

* Update masked.py

* Backwards compatibility fix for models
Get converter running

* Convert:
Move masks to class.
bugfix blur_size
some linting

* mask fix

* convert fixes

- missing facehull_rect re-added
- coverage to %
- corrected coverage logic
- cleanup of gui option ordering

* Update cli.py

* default for blur

* Update masked.py

* added preliminary low_mem version of OriginalHighRes model plugin

* Code cleanup, minor fixes

* Update masked.py

* Update masked.py

* Add dfl mask to convert

* histogram fix & seamless location

* update

* revert

* bugfix: Load actual configuration in gui

* Standardize nn_blocks

* Update cli.py

* Minor code amends

* Fix Original HiRes model

* Add masks to preview output for mask trainers
refactor trainer.__base.py

* Masked trainers converter support

* convert bugfix

* Bugfix: Converter for masked (dfl/dfaker) trainers

* Additional Losses (#592)

* initial upload

* Delete blur.py

* default initializer = He instead of Glorot (#588)

* Allow kernel_initializer to be overridable

* Add ICNR Initializer option for upscale on all models.

* Hopefully fixes RSoDs with original-highres model plugin

* remove debug line

* Original-HighRes model plugin Red Screen of Death fix, take #2

* Move global options to _base. Rename Villain model

* clipnorm and res block biases

* scale the end of res block

* res block

* dfaker pre-activation res

* OHRES pre-activation

* villain pre-activation

* tabs/space in nn_blocks

* fix for histogram with mask all set to zero

* fix to prevent two networks with same name

* GUI: Wider tooltips. Improve TQDM capture

* Fix regex bug

* Convert padding=48 to ratio of image size

* Add size option to alignments tool extract

* Pass through training image size to convert from model

* Convert: Pull training coverage from model

* convert: coverage, blur and erode to percent

* simplify matrix scaling

* ordering of sliders in train

* Add matrix scaling to utils. Use interpolation in lib.aligner transform

* masked.py Import get_matrix_scaling from utils

* fix circular import

* Update masked.py

* quick fix for matrix scaling

* testing thus for now

* tqdm regex capture bugfix

* Minor ammends

* blur size cleanup

* Remove coverage option from convert (Now cascades from model)

* Implement convert for all model types

* Add mask option and coverage option to all existing models

* bugfix for model loading on convert

* debug print removal

* Bugfix for masks in dfl_h128 and iae

* Update preview display. Add preview scaling to cli

* mask notes

* Delete training_data_v2.py

errant file

* training data variables

* Fix timelapse function

* Add new config items to state file for legacy purposes

* Slight GUI tweak

* Raise exception if problem with loaded model

* Add Tensorboard support (Logs stored in model directory)

* ICNR fix

* loss bugfix

* convert bugfix

* Move ini files to config folder. Make TensorBoard optional

* Fix training data for unbalanced inputs/outputs

* Fix config "none" test

* Keep helptext in .ini files when saving config from GUI

* Remove frame_dims from alignments

* Add no-flip and warp-to-landmarks cli options

* Revert OHR to RC4_fix version

* Fix lowmem mode on OHR model

* padding to variable

* Save models in parallel threads

* Speed-up of res_block stability

* Automated Reflection Padding

* Reflect Padding as a training option

Includes auto-calculation of proper padding shapes, input_shapes, output_shapes

Flag included in config now

* rest of reflect padding

* Move TB logging to cli. Session info to state file

* Add session iterations to state file

* Add recent files to menu. GUI code tidy up

* [GUI] Fix recent file list update issue

* Add correct loss names to TensorBoard logs

* Update live graph to use TensorBoard and remove animation

* Fix analysis tab. GUI optimizations

* Analysis Graph popup to Tensorboard Logs

* [GUI] Bug fix for graphing for models with hypens in name

* [GUI] Correctly split loss to tabs during training

* [GUI] Add loss type selection to analysis graph

* Fix store command name in recent files. Switch to correct tab on open

* [GUI] Disable training graph when 'no-logs' is selected

* Fix graphing race condition

* rename original_hires model to unbalanced
2019-02-09 18:35:12 +00:00

340 lines
14 KiB
Python

#!/usr/bin python3
""" The script to run the training process of faceswap """
import logging
import os
import sys
from threading import Lock
from time import sleep
import cv2
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from lib.keypress import KBHit
from lib.multithreading import MultiThread
from lib.queue_manager import queue_manager
from lib.utils import (get_folder, get_image_paths, set_system_verbosity)
from plugins.plugin_loader import PluginLoader
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class Train():
""" The training process. """
def __init__(self, arguments):
logger.debug("Initializing %s: (args: %s", self.__class__.__name__, arguments)
self.args = arguments
self.timelapse = self.set_timelapse()
self.images = self.get_images()
self.stop = False
self.save_now = False
self.preview_buffer = dict()
self.lock = Lock()
self.trainer_name = self.args.trainer
logger.debug("Initialized %s", self.__class__.__name__)
def set_timelapse(self):
""" Set timelapse paths if requested """
if (not self.args.timelapse_input_a and
not self.args.timelapse_input_b and
not self.args.timelapse_output):
return None
if not self.args.timelapse_input_a or not self.args.timelapse_input_b:
raise ValueError("To enable the timelapse, you have to supply "
"all the parameters (--timelapse-input-A and "
"--timelapse-input-B).")
for folder in (self.args.timelapse_input_a,
self.args.timelapse_input_b,
self.args.timelapse_output):
if folder is not None and not os.path.isdir(folder):
raise ValueError("The Timelapse path '{}' does not exist".format(folder))
kwargs = {"input_a": self.args.timelapse_input_a,
"input_b": self.args.timelapse_input_b,
"output": self.args.timelapse_output}
logger.debug("Timelapse enabled: %s", kwargs)
return kwargs
def get_images(self):
""" Check the image dirs exist, contain images and return the image
objects """
logger.debug("Getting image paths")
images = dict()
for side in ("a", "b"):
image_dir = getattr(self.args, "input_{}".format(side))
if not os.path.isdir(image_dir):
logger.error("Error: '%s' does not exist", image_dir)
exit(1)
if not os.listdir(image_dir):
logger.error("Error: '%s' contains no images", image_dir)
exit(1)
images[side] = get_image_paths(image_dir)
logger.info("Model A Directory: %s", self.args.input_a)
logger.info("Model B Directory: %s", self.args.input_b)
logger.debug("Got image paths: %s", [(key, str(len(val)) + " images")
for key, val in images.items()])
return images
def process(self):
""" Call the training process object """
logger.debug("Starting Training Process")
logger.info("Training data directory: %s", self.args.model_dir)
set_system_verbosity(self.args.loglevel)
thread = self.start_thread()
# queue_manager.debug_monitor(1)
if self.args.preview:
err = self.monitor_preview(thread)
else:
err = self.monitor_console(thread)
self.end_thread(thread, err)
logger.debug("Completed Training Process")
def start_thread(self):
""" Put the training process in a thread so we can keep control """
logger.debug("Launching Trainer thread")
thread = MultiThread(target=self.training)
thread.start()
logger.debug("Launched Trainer thread")
return thread
def end_thread(self, thread, err):
""" On termination output message and join thread back to main """
logger.debug("Ending Training thread")
if err:
msg = "Error caught! Exiting..."
log = logger.critical
else:
msg = ("Exit requested! The trainer will complete its current cycle, "
"save the models and quit (it can take up a couple of seconds "
"depending on your training speed). If you want to kill it now, "
"press Ctrl + c")
log = logger.info
log(msg)
self.stop = True
thread.join()
sys.stdout.flush()
logger.debug("Ended Training thread")
def training(self):
""" The training process to be run inside a thread """
try:
sleep(1) # Let preview instructions flush out to logger
logger.debug("Commencing Training")
logger.info("Loading data, this may take a while...")
if self.args.allow_growth:
self.set_tf_allow_growth()
model = self.load_model()
trainer = self.load_trainer(model)
self.run_training_cycle(model, trainer)
except KeyboardInterrupt:
try:
logger.debug("Keyboard Interrupt Caught. Saving Weights and exiting")
model.save_models()
trainer.clear_tensorboard()
except KeyboardInterrupt:
logger.info("Saving model weights has been cancelled!")
exit(0)
except Exception as err:
raise err
def load_model(self):
""" Load the model requested for training """
logger.debug("Loading Model")
model_dir = get_folder(self.args.model_dir)
model = PluginLoader.get_model(self.trainer_name)(
model_dir,
self.args.gpus,
no_logs=self.args.no_logs,
warp_to_landmarks=self.args.warp_to_landmarks,
no_flip=self.args.no_flip,
training_image_size=self.image_size,
alignments_paths=self.alignments_paths,
preview_scale=self.args.preview_scale)
logger.debug("Loaded Model")
return model
@property
def image_size(self):
""" Get the training set image size for storing in model data """
image = cv2.imread(self.images["a"][0]) # pylint: disable=no-member
size = image.shape[0]
logger.debug("Training image size: %s", size)
return size
@property
def alignments_paths(self):
""" Set the alignments path to input dirs if not provided """
alignments_paths = dict()
for side in ("a", "b"):
alignments_path = getattr(self.args, "alignments_path_{}".format(side))
if not alignments_path:
image_path = getattr(self.args, "input_{}".format(side))
alignments_path = os.path.join(image_path, "alignments.json")
alignments_paths[side] = alignments_path
logger.debug("Alignments paths: %s", alignments_paths)
return alignments_paths
def load_trainer(self, model):
""" Load the trainer requested for training """
logger.debug("Loading Trainer")
trainer = PluginLoader.get_trainer(model.trainer)
trainer = trainer(model,
self.images,
self.args.batch_size)
logger.debug("Loaded Trainer")
return trainer
def run_training_cycle(self, model, trainer):
""" Perform the training cycle """
logger.debug("Running Training Cycle")
if self.args.write_image or self.args.redirect_gui or self.args.preview:
display_func = self.show
else:
display_func = None
for iteration in range(0, self.args.iterations):
logger.trace("Training iteration: %s", iteration)
save_iteration = iteration % self.args.save_interval == 0
viewer = display_func if save_iteration or self.save_now else None
timelapse = self.timelapse if save_iteration else None
trainer.train_one_step(viewer, timelapse)
if self.stop:
logger.debug("Stop received. Terminating")
break
elif save_iteration:
logger.trace("Save Iteration: (iteration: %s", iteration)
model.save_models()
elif self.save_now:
logger.trace("Save Requested: (iteration: %s", iteration)
model.save_models()
self.save_now = False
logger.debug("Training cycle complete")
model.save_models()
trainer.clear_tensorboard()
self.stop = True
def monitor_preview(self, thread):
""" Generate the preview window and wait for keyboard input """
logger.debug("Launching Preview Monitor")
logger.info("R|=====================================================================")
logger.info("R|- Using live preview -")
logger.info("R|- Press 'ENTER' on the preview window to save and quit -")
logger.info("R|- Press 'S' on the preview window to save model weights immediately -")
logger.info("R|=====================================================================")
err = False
while True:
try:
with self.lock:
for name, image in self.preview_buffer.items():
cv2.imshow(name, image) # pylint: disable=no-member
key = cv2.waitKey(1000) # pylint: disable=no-member
if self.stop:
logger.debug("Stop received")
break
if thread.has_error:
logger.debug("Thread error detected")
err = True
break
if key == ord("\n") or key == ord("\r"):
logger.debug("Exit requested")
break
if key == ord("s"):
logger.info("Save requested")
self.save_now = True
except KeyboardInterrupt:
logger.debug("Keyboard Interrupt received")
break
logger.debug("Closed Preview Monitor")
return err
def monitor_console(self, thread):
""" Monitor the console
NB: A custom function needs to be used for this because
input() blocks """
logger.debug("Launching Console Monitor")
logger.info("R|===============================================")
logger.info("R|- Starting -")
logger.info("R|- Press 'ENTER' to save and quit -")
logger.info("R|- Press 'S' to save model weights immediately -")
logger.info("R|===============================================")
keypress = KBHit(is_gui=self.args.redirect_gui)
err = False
while True:
try:
if thread.has_error:
logger.debug("Thread error detected")
err = True
break
if self.stop:
logger.debug("Stop received")
break
if keypress.kbhit():
key = keypress.getch()
if key in ("\n", "\r"):
logger.debug("Exit requested")
break
if key in ("s", "S"):
logger.info("Save requested")
self.save_now = True
except KeyboardInterrupt:
logger.debug("Keyboard Interrupt received")
break
keypress.set_normal_term()
logger.debug("Closed Console Monitor")
return err
@staticmethod
def keypress_monitor(keypress_queue):
""" Monitor stdin for keypress """
while True:
keypress_queue.put(sys.stdin.read(1))
@staticmethod
def set_tf_allow_growth():
""" Allow TensorFlow to manage VRAM growth """
# pylint: disable=no-member
logger.debug("Setting Tensorflow 'allow_growth' option")
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = "0"
set_session(tf.Session(config=config))
logger.debug("Set Tensorflow 'allow_growth' option")
def show(self, image, name=""):
""" Generate the preview and write preview file output """
logger.trace("Updating preview: (name: %s)", name)
try:
scriptpath = os.path.realpath(os.path.dirname(sys.argv[0]))
if self.args.write_image:
logger.trace("Saving preview to disk")
img = "training_preview.jpg"
imgfile = os.path.join(scriptpath, img)
cv2.imwrite(imgfile, image) # pylint: disable=no-member
logger.trace("Saved preview to: '%s'", img)
if self.args.redirect_gui:
logger.trace("Generating preview for GUI")
img = ".gui_training_preview.jpg"
imgfile = os.path.join(scriptpath, "lib", "gui",
".cache", "preview", img)
cv2.imwrite(imgfile, image) # pylint: disable=no-member
logger.trace("Generated preview for GUI: '%s'", img)
if self.args.preview:
logger.trace("Generating preview for display: '%s'", name)
with self.lock:
self.preview_buffer[name] = image
logger.trace("Generated preview for display: '%s'", name)
except Exception as err:
logging.error("could not preview sample")
raise err
logger.trace("Updated preview: (name: %s)", name)