mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-07 10:43:27 -04:00
* model_refactor (#571) * original model to new structure * IAE model to new structure * OriginalHiRes to new structure * Fix trainer for different resolutions * Initial config implementation * Configparse library added * improved training data loader * dfaker model working * Add logging to training functions * Non blocking input for cli training * Add error handling to threads. Add non-mp queues to queue_handler * Improved Model Building and NNMeta * refactor lib/models * training refactor. DFL H128 model Implementation * Dfaker - use hashes * Move timelapse. Remove perceptual loss arg * Update INSTALL.md. Add logger formatting. Update Dfaker training * DFL h128 partially ported * Add mask to dfaker (#573) * Remove old models. Add mask to dfaker * dfl mask. Make masks selectable in config (#575) * DFL H128 Mask. Mask type selectable in config. * remove gan_v2_2 * Creating Input Size config for models Creating Input Size config for models Will be used downstream in converters. Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes) * Add mask loss options to config * MTCNN options to config.ini. Remove GAN config. Update USAGE.md * Add sliders for numerical values in GUI * Add config plugins menu to gui. Validate config * Only backup model if loss has dropped. Get training working again * bugfixes * Standardise loss printing * GUI idle cpu fixes. Graph loss fix. * mutli-gpu logging bugfix * Merge branch 'staging' into train_refactor * backup state file * Crash protection: Only backup if both total losses have dropped * Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes) * Load and save model structure with weights * Slight code update * Improve config loader. Add subpixel opt to all models. Config to state * Show samples... wrong input * Remove AE topology. Add input/output shapes to State * Port original_villain (birb/VillainGuy) model to faceswap * Add plugin info to GUI config pages * Load input shape from state. IAE Config options. * Fix transform_kwargs. Coverage to ratio. Bugfix mask detection * Suppress keras userwarnings. Automate zoom. Coverage_ratio to model def. * Consolidation of converters & refactor (#574) * Consolidation of converters & refactor Initial Upload of alpha Items - consolidate convert_mased & convert_adjust into one converter -add average color adjust to convert_masked -allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size -allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size -eliminate redundant type conversions to avoid multiple round-off errors -refactor loops for vectorization/speed -reorganize for clarity & style changes TODO - bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now - issues with mask border giving black ring at zero erosion .. investigate - remove GAN ?? - test enlargment factors of umeyama standard face .. match to coverage factor - make enlargment factor a model parameter - remove convert_adjusted and referencing code when finished * Update Convert_Masked.py default blur size of 2 to match original... description of enlargement tests breakout matrxi scaling into def * Enlargment scale as a cli parameter * Update cli.py * dynamic interpolation algorithm Compute x & y scale factors from the affine matrix on the fly by QR decomp. Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image * input size input size from config * fix issues with <1.0 erosion * Update convert.py * Update Convert_Adjust.py more work on the way to merginf * Clean up help note on sharpen * cleanup seamless * Delete Convert_Adjust.py * Update umeyama.py * Update training_data.py * swapping * segmentation stub * changes to convert.str * Update masked.py * Backwards compatibility fix for models Get converter running * Convert: Move masks to class. bugfix blur_size some linting * mask fix * convert fixes - missing facehull_rect re-added - coverage to % - corrected coverage logic - cleanup of gui option ordering * Update cli.py * default for blur * Update masked.py * added preliminary low_mem version of OriginalHighRes model plugin * Code cleanup, minor fixes * Update masked.py * Update masked.py * Add dfl mask to convert * histogram fix & seamless location * update * revert * bugfix: Load actual configuration in gui * Standardize nn_blocks * Update cli.py * Minor code amends * Fix Original HiRes model * Add masks to preview output for mask trainers refactor trainer.__base.py * Masked trainers converter support * convert bugfix * Bugfix: Converter for masked (dfl/dfaker) trainers * Additional Losses (#592) * initial upload * Delete blur.py * default initializer = He instead of Glorot (#588) * Allow kernel_initializer to be overridable * Add ICNR Initializer option for upscale on all models. * Hopefully fixes RSoDs with original-highres model plugin * remove debug line * Original-HighRes model plugin Red Screen of Death fix, take #2 * Move global options to _base. Rename Villain model * clipnorm and res block biases * scale the end of res block * res block * dfaker pre-activation res * OHRES pre-activation * villain pre-activation * tabs/space in nn_blocks * fix for histogram with mask all set to zero * fix to prevent two networks with same name * GUI: Wider tooltips. Improve TQDM capture * Fix regex bug * Convert padding=48 to ratio of image size * Add size option to alignments tool extract * Pass through training image size to convert from model * Convert: Pull training coverage from model * convert: coverage, blur and erode to percent * simplify matrix scaling * ordering of sliders in train * Add matrix scaling to utils. Use interpolation in lib.aligner transform * masked.py Import get_matrix_scaling from utils * fix circular import * Update masked.py * quick fix for matrix scaling * testing thus for now * tqdm regex capture bugfix * Minor ammends * blur size cleanup * Remove coverage option from convert (Now cascades from model) * Implement convert for all model types * Add mask option and coverage option to all existing models * bugfix for model loading on convert * debug print removal * Bugfix for masks in dfl_h128 and iae * Update preview display. Add preview scaling to cli * mask notes * Delete training_data_v2.py errant file * training data variables * Fix timelapse function * Add new config items to state file for legacy purposes * Slight GUI tweak * Raise exception if problem with loaded model * Add Tensorboard support (Logs stored in model directory) * ICNR fix * loss bugfix * convert bugfix * Move ini files to config folder. Make TensorBoard optional * Fix training data for unbalanced inputs/outputs * Fix config "none" test * Keep helptext in .ini files when saving config from GUI * Remove frame_dims from alignments * Add no-flip and warp-to-landmarks cli options * Revert OHR to RC4_fix version * Fix lowmem mode on OHR model * padding to variable * Save models in parallel threads * Speed-up of res_block stability * Automated Reflection Padding * Reflect Padding as a training option Includes auto-calculation of proper padding shapes, input_shapes, output_shapes Flag included in config now * rest of reflect padding * Move TB logging to cli. Session info to state file * Add session iterations to state file * Add recent files to menu. GUI code tidy up * [GUI] Fix recent file list update issue * Add correct loss names to TensorBoard logs * Update live graph to use TensorBoard and remove animation * Fix analysis tab. GUI optimizations * Analysis Graph popup to Tensorboard Logs * [GUI] Bug fix for graphing for models with hypens in name * [GUI] Correctly split loss to tabs during training * [GUI] Add loss type selection to analysis graph * Fix store command name in recent files. Switch to correct tab on open * [GUI] Disable training graph when 'no-logs' is selected * Fix graphing race condition * rename original_hires model to unbalanced
83 lines
3.7 KiB
Python
83 lines
3.7 KiB
Python
#!/usr/bin/env python3
|
|
""" Original - VillainGuy model
|
|
Based on the original https://www.reddit.com/r/deepfakes/ code sample + contribs
|
|
Adapted from a model by VillainGuy (https://github.com/VillainGuy) """
|
|
|
|
from keras.initializers import RandomNormal
|
|
from keras.layers import add, Conv2D, Dense, Flatten, Input, Reshape
|
|
from keras.models import Model as KerasModel
|
|
|
|
from lib.model.layers import PixelShuffler
|
|
from .original import logger, Model as OriginalModel
|
|
|
|
|
|
class Model(OriginalModel):
|
|
""" Villain Faceswap Model """
|
|
def __init__(self, *args, **kwargs):
|
|
logger.debug("Initializing %s: (args: %s, kwargs: %s",
|
|
self.__class__.__name__, args, kwargs)
|
|
|
|
kwargs["input_shape"] = (128, 128, 3)
|
|
kwargs["encoder_dim"] = 512 if self.config["lowmem"] else 1024
|
|
self.kernel_initializer = RandomNormal(0, 0.02)
|
|
|
|
super().__init__(*args, **kwargs)
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
def encoder(self):
|
|
""" Encoder Network """
|
|
kwargs = dict(kernel_initializer=self.kernel_initializer)
|
|
input_ = Input(shape=self.input_shape)
|
|
in_conv_filters = self.input_shape[0]
|
|
if self.input_shape[0] > 128:
|
|
in_conv_filters = 128 + (self.input_shape[0] - 128) // 4
|
|
dense_shape = self.input_shape[0] // 16
|
|
|
|
var_x = self.blocks.conv(input_, in_conv_filters, res_block_follows=True, **kwargs)
|
|
tmp_x = var_x
|
|
res_cycles = 8 if self.config.get("lowmem", False) else 16
|
|
for _ in range(res_cycles):
|
|
nn_x = self.blocks.res_block(var_x, 128, **kwargs)
|
|
var_x = nn_x
|
|
# consider adding scale before this layer to scale the residual chain
|
|
var_x = add([var_x, tmp_x])
|
|
var_x = self.blocks.conv(var_x, 128, **kwargs)
|
|
var_x = PixelShuffler()(var_x)
|
|
var_x = self.blocks.conv(var_x, 128, **kwargs)
|
|
var_x = PixelShuffler()(var_x)
|
|
var_x = self.blocks.conv(var_x, 128, **kwargs)
|
|
var_x = self.blocks.conv_sep(var_x, 256, **kwargs)
|
|
var_x = self.blocks.conv(var_x, 512, **kwargs)
|
|
if not self.config.get("lowmem", False):
|
|
var_x = self.blocks.conv_sep(var_x, 1024, **kwargs)
|
|
|
|
var_x = Dense(self.encoder_dim, **kwargs)(Flatten()(var_x))
|
|
var_x = Dense(dense_shape * dense_shape * 1024, **kwargs)(var_x)
|
|
var_x = Reshape((dense_shape, dense_shape, 1024))(var_x)
|
|
var_x = self.blocks.upscale(var_x, 512, **kwargs)
|
|
return KerasModel(input_, var_x)
|
|
|
|
def decoder(self):
|
|
""" Decoder Network """
|
|
kwargs = dict(kernel_initializer=self.kernel_initializer)
|
|
decoder_shape = self.input_shape[0] // 8
|
|
input_ = Input(shape=(decoder_shape, decoder_shape, 512))
|
|
|
|
var_x = input_
|
|
var_x = self.blocks.upscale(var_x, 512, res_block_follows=True, **kwargs)
|
|
var_x = self.blocks.res_block(var_x, 512, **kwargs)
|
|
var_x = self.blocks.upscale(var_x, 256, res_block_follows=True, **kwargs)
|
|
var_x = self.blocks.res_block(var_x, 256, **kwargs)
|
|
var_x = self.blocks.upscale(var_x, self.input_shape[0], res_block_follows=True, **kwargs)
|
|
var_x = self.blocks.res_block(var_x, self.input_shape[0], **kwargs)
|
|
var_x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(var_x)
|
|
outputs = [var_x]
|
|
|
|
if self.config.get("mask_type", None):
|
|
var_y = input_
|
|
var_y = self.blocks.upscale(var_y, 512)
|
|
var_y = self.blocks.upscale(var_y, 256)
|
|
var_y = self.blocks.upscale(var_y, self.input_shape[0])
|
|
var_y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(var_y)
|
|
outputs.append(var_y)
|
|
return KerasModel(input_, outputs=outputs)
|