1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/plugins/extract/detect/dlib_cnn.py
torzdf cd00859c40
model_refactor (#571) (#572)
* model_refactor (#571)

* original model to new structure

* IAE model to new structure

* OriginalHiRes to new structure

* Fix trainer for different resolutions

* Initial config implementation

* Configparse library added

* improved training data loader

* dfaker model working

* Add logging to training functions

* Non blocking input for cli training

* Add error handling to threads. Add non-mp queues to queue_handler

* Improved Model Building and NNMeta

* refactor lib/models

* training refactor. DFL H128 model Implementation

* Dfaker - use hashes

* Move timelapse. Remove perceptual loss arg

* Update INSTALL.md. Add logger formatting. Update Dfaker training

* DFL h128 partially ported

* Add mask to dfaker (#573)

* Remove old models. Add mask to dfaker

* dfl mask. Make masks selectable in config (#575)

* DFL H128 Mask. Mask type selectable in config.

* remove gan_v2_2

* Creating Input Size config for models

Creating Input Size config for models

Will be used downstream in converters.

Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes)

* Add mask loss options to config

* MTCNN options to config.ini. Remove GAN config. Update USAGE.md

* Add sliders for numerical values in GUI

* Add config plugins menu to gui. Validate config

* Only backup model if loss has dropped. Get training working again

* bugfixes

* Standardise loss printing

* GUI idle cpu fixes. Graph loss fix.

* mutli-gpu logging bugfix

* Merge branch 'staging' into train_refactor

* backup state file

* Crash protection: Only backup if both total losses have dropped

* Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes)

* Load and save model structure with weights

* Slight code update

* Improve config loader. Add subpixel opt to all models. Config to state

* Show samples... wrong input

* Remove AE topology. Add input/output shapes to State

* Port original_villain (birb/VillainGuy) model to faceswap

* Add plugin info to GUI config pages

* Load input shape from state. IAE Config options.

* Fix transform_kwargs.
Coverage to ratio.
Bugfix mask detection

* Suppress keras userwarnings.
Automate zoom.
Coverage_ratio to model def.

* Consolidation of converters & refactor (#574)

* Consolidation of converters & refactor

Initial Upload of alpha

Items
- consolidate convert_mased & convert_adjust into one converter
-add average color adjust to convert_masked
-allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size
-allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size
-eliminate redundant type conversions to avoid multiple round-off errors
-refactor loops for vectorization/speed
-reorganize for clarity & style changes

TODO
- bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now
- issues with mask border giving black ring at zero erosion .. investigate
- remove GAN ??
- test enlargment factors of umeyama standard face .. match to coverage factor
- make enlargment factor a model parameter
- remove convert_adjusted and referencing code when finished

* Update Convert_Masked.py

default blur size of 2 to match original...
description of enlargement tests
breakout matrxi scaling into def

* Enlargment scale as a cli parameter

* Update cli.py

* dynamic interpolation algorithm

Compute x & y scale factors from the affine matrix on the fly by QR decomp.
Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image

* input size
input size from config

* fix issues with <1.0 erosion

* Update convert.py

* Update Convert_Adjust.py

more work on the way to merginf

* Clean up help note on sharpen

* cleanup seamless

* Delete Convert_Adjust.py

* Update umeyama.py

* Update training_data.py

* swapping

* segmentation stub

* changes to convert.str

* Update masked.py

* Backwards compatibility fix for models
Get converter running

* Convert:
Move masks to class.
bugfix blur_size
some linting

* mask fix

* convert fixes

- missing facehull_rect re-added
- coverage to %
- corrected coverage logic
- cleanup of gui option ordering

* Update cli.py

* default for blur

* Update masked.py

* added preliminary low_mem version of OriginalHighRes model plugin

* Code cleanup, minor fixes

* Update masked.py

* Update masked.py

* Add dfl mask to convert

* histogram fix & seamless location

* update

* revert

* bugfix: Load actual configuration in gui

* Standardize nn_blocks

* Update cli.py

* Minor code amends

* Fix Original HiRes model

* Add masks to preview output for mask trainers
refactor trainer.__base.py

* Masked trainers converter support

* convert bugfix

* Bugfix: Converter for masked (dfl/dfaker) trainers

* Additional Losses (#592)

* initial upload

* Delete blur.py

* default initializer = He instead of Glorot (#588)

* Allow kernel_initializer to be overridable

* Add ICNR Initializer option for upscale on all models.

* Hopefully fixes RSoDs with original-highres model plugin

* remove debug line

* Original-HighRes model plugin Red Screen of Death fix, take #2

* Move global options to _base. Rename Villain model

* clipnorm and res block biases

* scale the end of res block

* res block

* dfaker pre-activation res

* OHRES pre-activation

* villain pre-activation

* tabs/space in nn_blocks

* fix for histogram with mask all set to zero

* fix to prevent two networks with same name

* GUI: Wider tooltips. Improve TQDM capture

* Fix regex bug

* Convert padding=48 to ratio of image size

* Add size option to alignments tool extract

* Pass through training image size to convert from model

* Convert: Pull training coverage from model

* convert: coverage, blur and erode to percent

* simplify matrix scaling

* ordering of sliders in train

* Add matrix scaling to utils. Use interpolation in lib.aligner transform

* masked.py Import get_matrix_scaling from utils

* fix circular import

* Update masked.py

* quick fix for matrix scaling

* testing thus for now

* tqdm regex capture bugfix

* Minor ammends

* blur size cleanup

* Remove coverage option from convert (Now cascades from model)

* Implement convert for all model types

* Add mask option and coverage option to all existing models

* bugfix for model loading on convert

* debug print removal

* Bugfix for masks in dfl_h128 and iae

* Update preview display. Add preview scaling to cli

* mask notes

* Delete training_data_v2.py

errant file

* training data variables

* Fix timelapse function

* Add new config items to state file for legacy purposes

* Slight GUI tweak

* Raise exception if problem with loaded model

* Add Tensorboard support (Logs stored in model directory)

* ICNR fix

* loss bugfix

* convert bugfix

* Move ini files to config folder. Make TensorBoard optional

* Fix training data for unbalanced inputs/outputs

* Fix config "none" test

* Keep helptext in .ini files when saving config from GUI

* Remove frame_dims from alignments

* Add no-flip and warp-to-landmarks cli options

* Revert OHR to RC4_fix version

* Fix lowmem mode on OHR model

* padding to variable

* Save models in parallel threads

* Speed-up of res_block stability

* Automated Reflection Padding

* Reflect Padding as a training option

Includes auto-calculation of proper padding shapes, input_shapes, output_shapes

Flag included in config now

* rest of reflect padding

* Move TB logging to cli. Session info to state file

* Add session iterations to state file

* Add recent files to menu. GUI code tidy up

* [GUI] Fix recent file list update issue

* Add correct loss names to TensorBoard logs

* Update live graph to use TensorBoard and remove animation

* Fix analysis tab. GUI optimizations

* Analysis Graph popup to Tensorboard Logs

* [GUI] Bug fix for graphing for models with hypens in name

* [GUI] Correctly split loss to tabs during training

* [GUI] Add loss type selection to analysis graph

* Fix store command name in recent files. Switch to correct tab on open

* [GUI] Disable training graph when 'no-logs' is selected

* Fix graphing race condition

* rename original_hires model to unbalanced
2019-02-09 18:35:12 +00:00

202 lines
8.3 KiB
Python

#!/usr/bin/env python3
""" DLIB CNN Face detection plugin """
import numpy as np
import face_recognition_models
from ._base import Detector, dlib, logger
class Detect(Detector):
""" Dlib detector for face recognition """
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.target = (1792, 1792) # Uses approx 1805MB of VRAM
self.vram = 1600 # Lower as batch size of 2 gives wiggle room
self.detector = None
@staticmethod
def compiled_for_cuda():
""" Return a message on DLIB Cuda Compilation status """
cuda = dlib.DLIB_USE_CUDA # pylint: disable=c-extension-no-member
msg = "DLib is "
if not cuda:
msg += "NOT "
msg += "compiled to use CUDA"
logger.verbose(msg)
return cuda
def set_model_path(self):
""" Model path handled by face_recognition_models """
model_path = face_recognition_models.cnn_face_detector_model_location()
logger.debug("Loading model: '%s'", model_path)
return model_path
def initialize(self, *args, **kwargs):
""" Calculate batch size """
super().initialize(*args, **kwargs)
logger.verbose("Initializing Dlib-CNN Detector...")
self.detector = dlib.cnn_face_detection_model_v1( # pylint: disable=c-extension-no-member
self.model_path)
is_cuda = self.compiled_for_cuda()
if is_cuda:
logger.debug("Using GPU")
vram_free = self.get_vram_free()
else:
logger.verbose("Using CPU")
vram_free = 2048
# Batch size of 2 actually uses about 338MB less than a single image??
# From there batches increase at ~680MB per item in the batch
self.batch_size = int(((vram_free - self.vram) / 680) + 2)
if self.batch_size < 1:
raise ValueError("Insufficient VRAM available to continue "
"({}MB)".format(int(vram_free)))
logger.verbose("Processing in batches of %s", self.batch_size)
self.init.set()
logger.info("Initialized Dlib-CNN Detector...")
def detect_faces(self, *args, **kwargs):
""" Detect faces in rgb image """
super().detect_faces(*args, **kwargs)
while True:
exhausted, batch = self.get_batch()
if not batch:
break
filenames = list()
images = list()
for item in batch:
filenames.append(item["filename"])
images.append(item["image"])
[detect_images, scales] = self.compile_detection_images(images)
batch_detected = self.detect_batch(detect_images)
processed = self.process_output(batch_detected,
indexes=None,
rotation_matrix=None,
output=None,
scales=scales)
if not all(faces for faces in processed) and self.rotation != [0]:
processed = self.process_rotations(detect_images, processed)
for idx, faces in enumerate(processed):
filename = filenames[idx]
for b_idx, item in enumerate(batch):
if item["filename"] == filename:
output = item
del_idx = b_idx
break
output["detected_faces"] = faces
self.finalize(output)
del batch[del_idx]
if exhausted:
break
self.queues["out"].put("EOF")
del self.detector # Free up VRAM
logger.debug("Detecting Faces complete")
def compile_detection_images(self, images):
""" Compile the detection images into batches """
logger.trace("Compiling Detection Images: %s", len(images))
detect_images = list()
scales = list()
for image in images:
scale = self.set_scale(image, is_square=True, scale_up=True)
detect_images.append(self.set_detect_image(image, scale))
scales.append(scale)
logger.trace("Compiled Detection Images")
return [detect_images, scales]
def detect_batch(self, detect_images, disable_message=False):
""" Pass the batch through detector for consistently sized images
or each image separately for inconsitently sized images """
logger.trace("Detecting Batch")
can_batch = self.check_batch_dims(detect_images)
if can_batch:
logger.trace("Valid for batching")
batch_detected = self.detector(detect_images, 0)
else:
if not disable_message:
logger.verbose("Batch has inconsistently sized images. Processing one "
"image at a time")
batch_detected = dlib.mmod_rectangless( # pylint: disable=c-extension-no-member
[self.detector(detect_image, 0) for detect_image in detect_images])
logger.trace("Detected Batch: %s", [item for item in batch_detected])
return batch_detected
@staticmethod
def check_batch_dims(images):
""" Check all images are the same size for batching """
dims = set(frame.shape[:2] for frame in images)
logger.trace("Batch Dimensions: %s", dims)
return len(dims) == 1
def process_output(self, batch_detected,
indexes=None, rotation_matrix=None, output=None, scales=None):
""" Process the output images """
logger.trace("Processing Output: (batch_detected: %s, indexes: %s, rotation_matrix: %s, "
"output: %s", batch_detected, indexes, rotation_matrix, output)
output = output if output else list()
for idx, faces in enumerate(batch_detected):
detected_faces = list()
scale = scales[idx]
if isinstance(rotation_matrix, np.ndarray):
faces = [self.rotate_rect(face.rect, rotation_matrix)
for face in faces]
for face in faces:
face = self.convert_to_dlib_rectangle(face)
face = dlib.rectangle( # pylint: disable=c-extension-no-member
int(face.left() / scale),
int(face.top() / scale),
int(face.right() / scale),
int(face.bottom() / scale))
detected_faces.append(face)
if indexes:
target = indexes[idx]
output[target] = detected_faces
else:
output.append(detected_faces)
logger.trace("Processed Output: %s", output)
return output
def process_rotations(self, detect_images, processed):
""" Rotate frames missing faces until face is found """
logger.trace("Processing Rotations")
for angle in self.rotation:
if all(faces for faces in processed):
break
if angle == 0:
continue
reprocess, indexes, rotmat = self.compile_reprocess(
processed,
detect_images,
angle)
batch_detected = self.detect_batch(reprocess, disable_message=True)
if any(item for item in batch_detected):
logger.verbose("found face(s) by rotating image %s degrees", angle)
processed = self.process_output(batch_detected,
indexes=indexes,
rotation_matrix=rotmat,
output=processed)
logger.trace("Processed Rotations")
return processed
def compile_reprocess(self, processed, detect_images, angle):
""" Rotate images which did not find a face for reprocessing """
logger.trace("Compile images for reprocessing")
indexes = list()
to_detect = list()
for idx, faces in enumerate(processed):
if faces:
continue
image = detect_images[idx]
rot_image, rot_matrix = self.rotate_image_by_angle(image, angle)
to_detect.append(rot_image)
indexes.append(idx)
logger.trace("Compiled images for reprocessing")
return to_detect, indexes, rot_matrix