mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-07 10:43:27 -04:00
* model_refactor (#571) * original model to new structure * IAE model to new structure * OriginalHiRes to new structure * Fix trainer for different resolutions * Initial config implementation * Configparse library added * improved training data loader * dfaker model working * Add logging to training functions * Non blocking input for cli training * Add error handling to threads. Add non-mp queues to queue_handler * Improved Model Building and NNMeta * refactor lib/models * training refactor. DFL H128 model Implementation * Dfaker - use hashes * Move timelapse. Remove perceptual loss arg * Update INSTALL.md. Add logger formatting. Update Dfaker training * DFL h128 partially ported * Add mask to dfaker (#573) * Remove old models. Add mask to dfaker * dfl mask. Make masks selectable in config (#575) * DFL H128 Mask. Mask type selectable in config. * remove gan_v2_2 * Creating Input Size config for models Creating Input Size config for models Will be used downstream in converters. Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes) * Add mask loss options to config * MTCNN options to config.ini. Remove GAN config. Update USAGE.md * Add sliders for numerical values in GUI * Add config plugins menu to gui. Validate config * Only backup model if loss has dropped. Get training working again * bugfixes * Standardise loss printing * GUI idle cpu fixes. Graph loss fix. * mutli-gpu logging bugfix * Merge branch 'staging' into train_refactor * backup state file * Crash protection: Only backup if both total losses have dropped * Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes) * Load and save model structure with weights * Slight code update * Improve config loader. Add subpixel opt to all models. Config to state * Show samples... wrong input * Remove AE topology. Add input/output shapes to State * Port original_villain (birb/VillainGuy) model to faceswap * Add plugin info to GUI config pages * Load input shape from state. IAE Config options. * Fix transform_kwargs. Coverage to ratio. Bugfix mask detection * Suppress keras userwarnings. Automate zoom. Coverage_ratio to model def. * Consolidation of converters & refactor (#574) * Consolidation of converters & refactor Initial Upload of alpha Items - consolidate convert_mased & convert_adjust into one converter -add average color adjust to convert_masked -allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size -allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size -eliminate redundant type conversions to avoid multiple round-off errors -refactor loops for vectorization/speed -reorganize for clarity & style changes TODO - bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now - issues with mask border giving black ring at zero erosion .. investigate - remove GAN ?? - test enlargment factors of umeyama standard face .. match to coverage factor - make enlargment factor a model parameter - remove convert_adjusted and referencing code when finished * Update Convert_Masked.py default blur size of 2 to match original... description of enlargement tests breakout matrxi scaling into def * Enlargment scale as a cli parameter * Update cli.py * dynamic interpolation algorithm Compute x & y scale factors from the affine matrix on the fly by QR decomp. Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image * input size input size from config * fix issues with <1.0 erosion * Update convert.py * Update Convert_Adjust.py more work on the way to merginf * Clean up help note on sharpen * cleanup seamless * Delete Convert_Adjust.py * Update umeyama.py * Update training_data.py * swapping * segmentation stub * changes to convert.str * Update masked.py * Backwards compatibility fix for models Get converter running * Convert: Move masks to class. bugfix blur_size some linting * mask fix * convert fixes - missing facehull_rect re-added - coverage to % - corrected coverage logic - cleanup of gui option ordering * Update cli.py * default for blur * Update masked.py * added preliminary low_mem version of OriginalHighRes model plugin * Code cleanup, minor fixes * Update masked.py * Update masked.py * Add dfl mask to convert * histogram fix & seamless location * update * revert * bugfix: Load actual configuration in gui * Standardize nn_blocks * Update cli.py * Minor code amends * Fix Original HiRes model * Add masks to preview output for mask trainers refactor trainer.__base.py * Masked trainers converter support * convert bugfix * Bugfix: Converter for masked (dfl/dfaker) trainers * Additional Losses (#592) * initial upload * Delete blur.py * default initializer = He instead of Glorot (#588) * Allow kernel_initializer to be overridable * Add ICNR Initializer option for upscale on all models. * Hopefully fixes RSoDs with original-highres model plugin * remove debug line * Original-HighRes model plugin Red Screen of Death fix, take #2 * Move global options to _base. Rename Villain model * clipnorm and res block biases * scale the end of res block * res block * dfaker pre-activation res * OHRES pre-activation * villain pre-activation * tabs/space in nn_blocks * fix for histogram with mask all set to zero * fix to prevent two networks with same name * GUI: Wider tooltips. Improve TQDM capture * Fix regex bug * Convert padding=48 to ratio of image size * Add size option to alignments tool extract * Pass through training image size to convert from model * Convert: Pull training coverage from model * convert: coverage, blur and erode to percent * simplify matrix scaling * ordering of sliders in train * Add matrix scaling to utils. Use interpolation in lib.aligner transform * masked.py Import get_matrix_scaling from utils * fix circular import * Update masked.py * quick fix for matrix scaling * testing thus for now * tqdm regex capture bugfix * Minor ammends * blur size cleanup * Remove coverage option from convert (Now cascades from model) * Implement convert for all model types * Add mask option and coverage option to all existing models * bugfix for model loading on convert * debug print removal * Bugfix for masks in dfl_h128 and iae * Update preview display. Add preview scaling to cli * mask notes * Delete training_data_v2.py errant file * training data variables * Fix timelapse function * Add new config items to state file for legacy purposes * Slight GUI tweak * Raise exception if problem with loaded model * Add Tensorboard support (Logs stored in model directory) * ICNR fix * loss bugfix * convert bugfix * Move ini files to config folder. Make TensorBoard optional * Fix training data for unbalanced inputs/outputs * Fix config "none" test * Keep helptext in .ini files when saving config from GUI * Remove frame_dims from alignments * Add no-flip and warp-to-landmarks cli options * Revert OHR to RC4_fix version * Fix lowmem mode on OHR model * padding to variable * Save models in parallel threads * Speed-up of res_block stability * Automated Reflection Padding * Reflect Padding as a training option Includes auto-calculation of proper padding shapes, input_shapes, output_shapes Flag included in config now * rest of reflect padding * Move TB logging to cli. Session info to state file * Add session iterations to state file * Add recent files to menu. GUI code tidy up * [GUI] Fix recent file list update issue * Add correct loss names to TensorBoard logs * Update live graph to use TensorBoard and remove animation * Fix analysis tab. GUI optimizations * Analysis Graph popup to Tensorboard Logs * [GUI] Bug fix for graphing for models with hypens in name * [GUI] Correctly split loss to tabs during training * [GUI] Add loss type selection to analysis graph * Fix store command name in recent files. Switch to correct tab on open * [GUI] Disable training graph when 'no-logs' is selected * Fix graphing race condition * rename original_hires model to unbalanced
202 lines
8.3 KiB
Python
202 lines
8.3 KiB
Python
#!/usr/bin/env python3
|
|
""" DLIB CNN Face detection plugin """
|
|
|
|
import numpy as np
|
|
import face_recognition_models
|
|
|
|
from ._base import Detector, dlib, logger
|
|
|
|
|
|
class Detect(Detector):
|
|
""" Dlib detector for face recognition """
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.target = (1792, 1792) # Uses approx 1805MB of VRAM
|
|
self.vram = 1600 # Lower as batch size of 2 gives wiggle room
|
|
self.detector = None
|
|
|
|
@staticmethod
|
|
def compiled_for_cuda():
|
|
""" Return a message on DLIB Cuda Compilation status """
|
|
cuda = dlib.DLIB_USE_CUDA # pylint: disable=c-extension-no-member
|
|
msg = "DLib is "
|
|
if not cuda:
|
|
msg += "NOT "
|
|
msg += "compiled to use CUDA"
|
|
logger.verbose(msg)
|
|
return cuda
|
|
|
|
def set_model_path(self):
|
|
""" Model path handled by face_recognition_models """
|
|
model_path = face_recognition_models.cnn_face_detector_model_location()
|
|
logger.debug("Loading model: '%s'", model_path)
|
|
return model_path
|
|
|
|
def initialize(self, *args, **kwargs):
|
|
""" Calculate batch size """
|
|
super().initialize(*args, **kwargs)
|
|
logger.verbose("Initializing Dlib-CNN Detector...")
|
|
self.detector = dlib.cnn_face_detection_model_v1( # pylint: disable=c-extension-no-member
|
|
self.model_path)
|
|
is_cuda = self.compiled_for_cuda()
|
|
if is_cuda:
|
|
logger.debug("Using GPU")
|
|
vram_free = self.get_vram_free()
|
|
else:
|
|
logger.verbose("Using CPU")
|
|
vram_free = 2048
|
|
|
|
# Batch size of 2 actually uses about 338MB less than a single image??
|
|
# From there batches increase at ~680MB per item in the batch
|
|
|
|
self.batch_size = int(((vram_free - self.vram) / 680) + 2)
|
|
|
|
if self.batch_size < 1:
|
|
raise ValueError("Insufficient VRAM available to continue "
|
|
"({}MB)".format(int(vram_free)))
|
|
|
|
logger.verbose("Processing in batches of %s", self.batch_size)
|
|
|
|
self.init.set()
|
|
logger.info("Initialized Dlib-CNN Detector...")
|
|
|
|
def detect_faces(self, *args, **kwargs):
|
|
""" Detect faces in rgb image """
|
|
super().detect_faces(*args, **kwargs)
|
|
while True:
|
|
exhausted, batch = self.get_batch()
|
|
if not batch:
|
|
break
|
|
filenames = list()
|
|
images = list()
|
|
for item in batch:
|
|
filenames.append(item["filename"])
|
|
images.append(item["image"])
|
|
[detect_images, scales] = self.compile_detection_images(images)
|
|
batch_detected = self.detect_batch(detect_images)
|
|
processed = self.process_output(batch_detected,
|
|
indexes=None,
|
|
rotation_matrix=None,
|
|
output=None,
|
|
scales=scales)
|
|
if not all(faces for faces in processed) and self.rotation != [0]:
|
|
processed = self.process_rotations(detect_images, processed)
|
|
for idx, faces in enumerate(processed):
|
|
filename = filenames[idx]
|
|
for b_idx, item in enumerate(batch):
|
|
if item["filename"] == filename:
|
|
output = item
|
|
del_idx = b_idx
|
|
break
|
|
output["detected_faces"] = faces
|
|
self.finalize(output)
|
|
del batch[del_idx]
|
|
if exhausted:
|
|
break
|
|
self.queues["out"].put("EOF")
|
|
del self.detector # Free up VRAM
|
|
logger.debug("Detecting Faces complete")
|
|
|
|
def compile_detection_images(self, images):
|
|
""" Compile the detection images into batches """
|
|
logger.trace("Compiling Detection Images: %s", len(images))
|
|
detect_images = list()
|
|
scales = list()
|
|
for image in images:
|
|
scale = self.set_scale(image, is_square=True, scale_up=True)
|
|
detect_images.append(self.set_detect_image(image, scale))
|
|
scales.append(scale)
|
|
logger.trace("Compiled Detection Images")
|
|
return [detect_images, scales]
|
|
|
|
def detect_batch(self, detect_images, disable_message=False):
|
|
""" Pass the batch through detector for consistently sized images
|
|
or each image separately for inconsitently sized images """
|
|
logger.trace("Detecting Batch")
|
|
can_batch = self.check_batch_dims(detect_images)
|
|
if can_batch:
|
|
logger.trace("Valid for batching")
|
|
batch_detected = self.detector(detect_images, 0)
|
|
else:
|
|
if not disable_message:
|
|
logger.verbose("Batch has inconsistently sized images. Processing one "
|
|
"image at a time")
|
|
batch_detected = dlib.mmod_rectangless( # pylint: disable=c-extension-no-member
|
|
[self.detector(detect_image, 0) for detect_image in detect_images])
|
|
logger.trace("Detected Batch: %s", [item for item in batch_detected])
|
|
return batch_detected
|
|
|
|
@staticmethod
|
|
def check_batch_dims(images):
|
|
""" Check all images are the same size for batching """
|
|
dims = set(frame.shape[:2] for frame in images)
|
|
logger.trace("Batch Dimensions: %s", dims)
|
|
return len(dims) == 1
|
|
|
|
def process_output(self, batch_detected,
|
|
indexes=None, rotation_matrix=None, output=None, scales=None):
|
|
""" Process the output images """
|
|
logger.trace("Processing Output: (batch_detected: %s, indexes: %s, rotation_matrix: %s, "
|
|
"output: %s", batch_detected, indexes, rotation_matrix, output)
|
|
output = output if output else list()
|
|
for idx, faces in enumerate(batch_detected):
|
|
detected_faces = list()
|
|
scale = scales[idx]
|
|
|
|
if isinstance(rotation_matrix, np.ndarray):
|
|
faces = [self.rotate_rect(face.rect, rotation_matrix)
|
|
for face in faces]
|
|
|
|
for face in faces:
|
|
face = self.convert_to_dlib_rectangle(face)
|
|
face = dlib.rectangle( # pylint: disable=c-extension-no-member
|
|
int(face.left() / scale),
|
|
int(face.top() / scale),
|
|
int(face.right() / scale),
|
|
int(face.bottom() / scale))
|
|
detected_faces.append(face)
|
|
if indexes:
|
|
target = indexes[idx]
|
|
output[target] = detected_faces
|
|
else:
|
|
output.append(detected_faces)
|
|
logger.trace("Processed Output: %s", output)
|
|
return output
|
|
|
|
def process_rotations(self, detect_images, processed):
|
|
""" Rotate frames missing faces until face is found """
|
|
logger.trace("Processing Rotations")
|
|
for angle in self.rotation:
|
|
if all(faces for faces in processed):
|
|
break
|
|
if angle == 0:
|
|
continue
|
|
reprocess, indexes, rotmat = self.compile_reprocess(
|
|
processed,
|
|
detect_images,
|
|
angle)
|
|
|
|
batch_detected = self.detect_batch(reprocess, disable_message=True)
|
|
if any(item for item in batch_detected):
|
|
logger.verbose("found face(s) by rotating image %s degrees", angle)
|
|
processed = self.process_output(batch_detected,
|
|
indexes=indexes,
|
|
rotation_matrix=rotmat,
|
|
output=processed)
|
|
logger.trace("Processed Rotations")
|
|
return processed
|
|
|
|
def compile_reprocess(self, processed, detect_images, angle):
|
|
""" Rotate images which did not find a face for reprocessing """
|
|
logger.trace("Compile images for reprocessing")
|
|
indexes = list()
|
|
to_detect = list()
|
|
for idx, faces in enumerate(processed):
|
|
if faces:
|
|
continue
|
|
image = detect_images[idx]
|
|
rot_image, rot_matrix = self.rotate_image_by_angle(image, angle)
|
|
to_detect.append(rot_image)
|
|
indexes.append(idx)
|
|
logger.trace("Compiled images for reprocessing")
|
|
return to_detect, indexes, rot_matrix
|