1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/lib/model/normalization.py
torzdf cd00859c40
model_refactor (#571) (#572)
* model_refactor (#571)

* original model to new structure

* IAE model to new structure

* OriginalHiRes to new structure

* Fix trainer for different resolutions

* Initial config implementation

* Configparse library added

* improved training data loader

* dfaker model working

* Add logging to training functions

* Non blocking input for cli training

* Add error handling to threads. Add non-mp queues to queue_handler

* Improved Model Building and NNMeta

* refactor lib/models

* training refactor. DFL H128 model Implementation

* Dfaker - use hashes

* Move timelapse. Remove perceptual loss arg

* Update INSTALL.md. Add logger formatting. Update Dfaker training

* DFL h128 partially ported

* Add mask to dfaker (#573)

* Remove old models. Add mask to dfaker

* dfl mask. Make masks selectable in config (#575)

* DFL H128 Mask. Mask type selectable in config.

* remove gan_v2_2

* Creating Input Size config for models

Creating Input Size config for models

Will be used downstream in converters.

Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes)

* Add mask loss options to config

* MTCNN options to config.ini. Remove GAN config. Update USAGE.md

* Add sliders for numerical values in GUI

* Add config plugins menu to gui. Validate config

* Only backup model if loss has dropped. Get training working again

* bugfixes

* Standardise loss printing

* GUI idle cpu fixes. Graph loss fix.

* mutli-gpu logging bugfix

* Merge branch 'staging' into train_refactor

* backup state file

* Crash protection: Only backup if both total losses have dropped

* Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes)

* Load and save model structure with weights

* Slight code update

* Improve config loader. Add subpixel opt to all models. Config to state

* Show samples... wrong input

* Remove AE topology. Add input/output shapes to State

* Port original_villain (birb/VillainGuy) model to faceswap

* Add plugin info to GUI config pages

* Load input shape from state. IAE Config options.

* Fix transform_kwargs.
Coverage to ratio.
Bugfix mask detection

* Suppress keras userwarnings.
Automate zoom.
Coverage_ratio to model def.

* Consolidation of converters & refactor (#574)

* Consolidation of converters & refactor

Initial Upload of alpha

Items
- consolidate convert_mased & convert_adjust into one converter
-add average color adjust to convert_masked
-allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size
-allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size
-eliminate redundant type conversions to avoid multiple round-off errors
-refactor loops for vectorization/speed
-reorganize for clarity & style changes

TODO
- bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now
- issues with mask border giving black ring at zero erosion .. investigate
- remove GAN ??
- test enlargment factors of umeyama standard face .. match to coverage factor
- make enlargment factor a model parameter
- remove convert_adjusted and referencing code when finished

* Update Convert_Masked.py

default blur size of 2 to match original...
description of enlargement tests
breakout matrxi scaling into def

* Enlargment scale as a cli parameter

* Update cli.py

* dynamic interpolation algorithm

Compute x & y scale factors from the affine matrix on the fly by QR decomp.
Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image

* input size
input size from config

* fix issues with <1.0 erosion

* Update convert.py

* Update Convert_Adjust.py

more work on the way to merginf

* Clean up help note on sharpen

* cleanup seamless

* Delete Convert_Adjust.py

* Update umeyama.py

* Update training_data.py

* swapping

* segmentation stub

* changes to convert.str

* Update masked.py

* Backwards compatibility fix for models
Get converter running

* Convert:
Move masks to class.
bugfix blur_size
some linting

* mask fix

* convert fixes

- missing facehull_rect re-added
- coverage to %
- corrected coverage logic
- cleanup of gui option ordering

* Update cli.py

* default for blur

* Update masked.py

* added preliminary low_mem version of OriginalHighRes model plugin

* Code cleanup, minor fixes

* Update masked.py

* Update masked.py

* Add dfl mask to convert

* histogram fix & seamless location

* update

* revert

* bugfix: Load actual configuration in gui

* Standardize nn_blocks

* Update cli.py

* Minor code amends

* Fix Original HiRes model

* Add masks to preview output for mask trainers
refactor trainer.__base.py

* Masked trainers converter support

* convert bugfix

* Bugfix: Converter for masked (dfl/dfaker) trainers

* Additional Losses (#592)

* initial upload

* Delete blur.py

* default initializer = He instead of Glorot (#588)

* Allow kernel_initializer to be overridable

* Add ICNR Initializer option for upscale on all models.

* Hopefully fixes RSoDs with original-highres model plugin

* remove debug line

* Original-HighRes model plugin Red Screen of Death fix, take #2

* Move global options to _base. Rename Villain model

* clipnorm and res block biases

* scale the end of res block

* res block

* dfaker pre-activation res

* OHRES pre-activation

* villain pre-activation

* tabs/space in nn_blocks

* fix for histogram with mask all set to zero

* fix to prevent two networks with same name

* GUI: Wider tooltips. Improve TQDM capture

* Fix regex bug

* Convert padding=48 to ratio of image size

* Add size option to alignments tool extract

* Pass through training image size to convert from model

* Convert: Pull training coverage from model

* convert: coverage, blur and erode to percent

* simplify matrix scaling

* ordering of sliders in train

* Add matrix scaling to utils. Use interpolation in lib.aligner transform

* masked.py Import get_matrix_scaling from utils

* fix circular import

* Update masked.py

* quick fix for matrix scaling

* testing thus for now

* tqdm regex capture bugfix

* Minor ammends

* blur size cleanup

* Remove coverage option from convert (Now cascades from model)

* Implement convert for all model types

* Add mask option and coverage option to all existing models

* bugfix for model loading on convert

* debug print removal

* Bugfix for masks in dfl_h128 and iae

* Update preview display. Add preview scaling to cli

* mask notes

* Delete training_data_v2.py

errant file

* training data variables

* Fix timelapse function

* Add new config items to state file for legacy purposes

* Slight GUI tweak

* Raise exception if problem with loaded model

* Add Tensorboard support (Logs stored in model directory)

* ICNR fix

* loss bugfix

* convert bugfix

* Move ini files to config folder. Make TensorBoard optional

* Fix training data for unbalanced inputs/outputs

* Fix config "none" test

* Keep helptext in .ini files when saving config from GUI

* Remove frame_dims from alignments

* Add no-flip and warp-to-landmarks cli options

* Revert OHR to RC4_fix version

* Fix lowmem mode on OHR model

* padding to variable

* Save models in parallel threads

* Speed-up of res_block stability

* Automated Reflection Padding

* Reflect Padding as a training option

Includes auto-calculation of proper padding shapes, input_shapes, output_shapes

Flag included in config now

* rest of reflect padding

* Move TB logging to cli. Session info to state file

* Add session iterations to state file

* Add recent files to menu. GUI code tidy up

* [GUI] Fix recent file list update issue

* Add correct loss names to TensorBoard logs

* Update live graph to use TensorBoard and remove animation

* Fix analysis tab. GUI optimizations

* Analysis Graph popup to Tensorboard Logs

* [GUI] Bug fix for graphing for models with hypens in name

* [GUI] Correctly split loss to tabs during training

* [GUI] Add loss type selection to analysis graph

* Fix store command name in recent files. Switch to correct tab on open

* [GUI] Disable training graph when 'no-logs' is selected

* Fix graphing race condition

* rename original_hires model to unbalanced
2019-02-09 18:35:12 +00:00

289 lines
12 KiB
Python

#!/usr/bin/env python3
""" Normaliztion methods for faceswap.py
Code from:
shoanlu GAN: https://github.com/shaoanlu/faceswap-GAN"""
import sys
import inspect
from keras.engine import Layer, InputSpec
from keras import initializers, regularizers, constraints
from keras import backend as K
from keras.utils.generic_utils import get_custom_objects
def to_list(inp):
""" Convert to list """
if not isinstance(inp, (list, tuple)):
return [inp]
return list(inp)
class InstanceNormalization(Layer):
"""Instance normalization layer (Lei Ba et al, 2016, Ulyanov et al., 2016).
Normalize the activations of the previous layer at each step,
i.e. applies a transformation that maintains the mean activation
close to 0 and the activation standard deviation close to 1.
# Arguments
axis: Integer, the axis that should be normalized
(typically the features axis).
For instance, after a `Conv2D` layer with
`data_format="channels_first"`,
set `axis=1` in `InstanceNormalization`.
Setting `axis=None` will normalize all values in each instance of the batch.
Axis 0 is the batch dimension. `axis` cannot be set to 0 to avoid errors.
epsilon: Small float added to variance to avoid dividing by zero.
center: If True, add offset of `beta` to normalized tensor.
If False, `beta` is ignored.
scale: If True, multiply by `gamma`.
If False, `gamma` is not used.
When the next layer is linear (also e.g. `nn.relu`),
this can be disabled since the scaling
will be done by the next layer.
beta_initializer: Initializer for the beta weight.
gamma_initializer: Initializer for the gamma weight.
beta_regularizer: Optional regularizer for the beta weight.
gamma_regularizer: Optional regularizer for the gamma weight.
beta_constraint: Optional constraint for the beta weight.
gamma_constraint: Optional constraint for the gamma weight.
# Input shape
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
# Output shape
Same shape as input.
# References
- [Layer Normalization](https://arxiv.org/abs/1607.06450)
- [Instance Normalization: The Missing Ingredient for Fast
Stylization](https://arxiv.org/abs/1607.08022)
"""
def __init__(self,
axis=None,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer='zeros',
gamma_initializer='ones',
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
**kwargs):
self.beta = None
self.gamma = None
super(InstanceNormalization, self).__init__(**kwargs)
self.supports_masking = True
self.axis = axis
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = initializers.get(beta_initializer)
self.gamma_initializer = initializers.get(gamma_initializer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_constraint = constraints.get(beta_constraint)
self.gamma_constraint = constraints.get(gamma_constraint)
def build(self, input_shape):
ndim = len(input_shape)
if self.axis == 0:
raise ValueError('Axis cannot be zero')
if (self.axis is not None) and (ndim == 2):
raise ValueError('Cannot specify axis for rank 1 tensor')
self.input_spec = InputSpec(ndim=ndim)
if self.axis is None:
shape = (1,)
else:
shape = (input_shape[self.axis],)
if self.scale:
self.gamma = self.add_weight(shape=shape,
name='gamma',
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint)
else:
self.gamma = None
if self.center:
self.beta = self.add_weight(shape=shape,
name='beta',
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint)
else:
self.beta = None
self.built = True
def call(self, inputs, training=None):
input_shape = K.int_shape(inputs)
reduction_axes = list(range(0, len(input_shape)))
if self.axis is not None:
del reduction_axes[self.axis]
del reduction_axes[0]
mean = K.mean(inputs, reduction_axes, keepdims=True)
stddev = K.std(inputs, reduction_axes, keepdims=True) + self.epsilon
normed = (inputs - mean) / stddev
broadcast_shape = [1] * len(input_shape)
if self.axis is not None:
broadcast_shape[self.axis] = input_shape[self.axis]
if self.scale:
broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
normed = normed * broadcast_gamma
if self.center:
broadcast_beta = K.reshape(self.beta, broadcast_shape)
normed = normed + broadcast_beta
return normed
def get_config(self):
config = {
'axis': self.axis,
'epsilon': self.epsilon,
'center': self.center,
'scale': self.scale,
'beta_initializer': initializers.serialize(self.beta_initializer),
'gamma_initializer': initializers.serialize(self.gamma_initializer),
'beta_regularizer': regularizers.serialize(self.beta_regularizer),
'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
'beta_constraint': constraints.serialize(self.beta_constraint),
'gamma_constraint': constraints.serialize(self.gamma_constraint)
}
base_config = super(InstanceNormalization, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class GroupNormalization(Layer):
""" Group Normalization
from: shoanlu GAN: https://github.com/shaoanlu/faceswap-GAN"""
def __init__(self, axis=-1,
gamma_init='one', beta_init='zero',
gamma_regularizer=None, beta_regularizer=None,
epsilon=1e-6,
group=32,
data_format=None,
**kwargs):
self.beta = None
self.gamma = None
super(GroupNormalization, self).__init__(**kwargs)
self.axis = to_list(axis)
self.gamma_init = initializers.get(gamma_init)
self.beta_init = initializers.get(beta_init)
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.epsilon = epsilon
self.group = group
self.data_format = K.normalize_data_format(data_format)
self.supports_masking = True
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
shape = [1 for _ in input_shape]
if self.data_format == 'channels_last':
channel_axis = -1
shape[channel_axis] = input_shape[channel_axis]
elif self.data_format == 'channels_first':
channel_axis = 1
shape[channel_axis] = input_shape[channel_axis]
# for i in self.axis:
# shape[i] = input_shape[i]
self.gamma = self.add_weight(shape=shape,
initializer=self.gamma_init,
regularizer=self.gamma_regularizer,
name='gamma')
self.beta = self.add_weight(shape=shape,
initializer=self.beta_init,
regularizer=self.beta_regularizer,
name='beta')
self.built = True
def call(self, inputs, mask=None):
input_shape = K.int_shape(inputs)
if len(input_shape) != 4 and len(input_shape) != 2:
raise ValueError('Inputs should have rank ' +
str(4) + " or " + str(2) +
'; Received input shape:', str(input_shape))
if len(input_shape) == 4:
if self.data_format == 'channels_last':
batch_size, height, width, channels = input_shape
if batch_size is None:
batch_size = -1
if channels < self.group:
raise ValueError('Input channels should be larger than group size' +
'; Received input channels: ' + str(channels) +
'; Group size: ' + str(self.group))
var_x = K.reshape(inputs, (batch_size,
height,
width,
self.group,
channels // self.group))
mean = K.mean(var_x, axis=[1, 2, 4], keepdims=True)
std = K.sqrt(K.var(var_x, axis=[1, 2, 4], keepdims=True) + self.epsilon)
var_x = (var_x - mean) / std
var_x = K.reshape(var_x, (batch_size, height, width, channels))
retval = self.gamma * var_x + self.beta
elif self.data_format == 'channels_first':
batch_size, channels, height, width = input_shape
if batch_size is None:
batch_size = -1
if channels < self.group:
raise ValueError('Input channels should be larger than group size' +
'; Received input channels: ' + str(channels) +
'; Group size: ' + str(self.group))
var_x = K.reshape(inputs, (batch_size,
self.group,
channels // self.group,
height,
width))
mean = K.mean(var_x, axis=[2, 3, 4], keepdims=True)
std = K.sqrt(K.var(var_x, axis=[2, 3, 4], keepdims=True) + self.epsilon)
var_x = (var_x - mean) / std
var_x = K.reshape(var_x, (batch_size, channels, height, width))
retval = self.gamma * var_x + self.beta
elif len(input_shape) == 2:
reduction_axes = list(range(0, len(input_shape)))
del reduction_axes[0]
batch_size, _ = input_shape
if batch_size is None:
batch_size = -1
mean = K.mean(inputs, keepdims=True)
std = K.sqrt(K.var(inputs, keepdims=True) + self.epsilon)
var_x = (inputs - mean) / std
retval = self.gamma * var_x + self.beta
return retval
def get_config(self):
config = {'epsilon': self.epsilon,
'axis': self.axis,
'gamma_init': initializers.serialize(self.gamma_init),
'beta_init': initializers.serialize(self.beta_init),
'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
'beta_regularizer': regularizers.serialize(self.gamma_regularizer),
'group': self.group}
base_config = super(GroupNormalization, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
# Update normalizations into Keras custom objects
for name, obj in inspect.getmembers(sys.modules[__name__]):
if inspect.isclass(obj) and obj.__module__ == __name__:
get_custom_objects().update({name: obj})