1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/lib/model/nn_blocks.py
torzdf cd00859c40
model_refactor (#571) (#572)
* model_refactor (#571)

* original model to new structure

* IAE model to new structure

* OriginalHiRes to new structure

* Fix trainer for different resolutions

* Initial config implementation

* Configparse library added

* improved training data loader

* dfaker model working

* Add logging to training functions

* Non blocking input for cli training

* Add error handling to threads. Add non-mp queues to queue_handler

* Improved Model Building and NNMeta

* refactor lib/models

* training refactor. DFL H128 model Implementation

* Dfaker - use hashes

* Move timelapse. Remove perceptual loss arg

* Update INSTALL.md. Add logger formatting. Update Dfaker training

* DFL h128 partially ported

* Add mask to dfaker (#573)

* Remove old models. Add mask to dfaker

* dfl mask. Make masks selectable in config (#575)

* DFL H128 Mask. Mask type selectable in config.

* remove gan_v2_2

* Creating Input Size config for models

Creating Input Size config for models

Will be used downstream in converters.

Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes)

* Add mask loss options to config

* MTCNN options to config.ini. Remove GAN config. Update USAGE.md

* Add sliders for numerical values in GUI

* Add config plugins menu to gui. Validate config

* Only backup model if loss has dropped. Get training working again

* bugfixes

* Standardise loss printing

* GUI idle cpu fixes. Graph loss fix.

* mutli-gpu logging bugfix

* Merge branch 'staging' into train_refactor

* backup state file

* Crash protection: Only backup if both total losses have dropped

* Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes)

* Load and save model structure with weights

* Slight code update

* Improve config loader. Add subpixel opt to all models. Config to state

* Show samples... wrong input

* Remove AE topology. Add input/output shapes to State

* Port original_villain (birb/VillainGuy) model to faceswap

* Add plugin info to GUI config pages

* Load input shape from state. IAE Config options.

* Fix transform_kwargs.
Coverage to ratio.
Bugfix mask detection

* Suppress keras userwarnings.
Automate zoom.
Coverage_ratio to model def.

* Consolidation of converters & refactor (#574)

* Consolidation of converters & refactor

Initial Upload of alpha

Items
- consolidate convert_mased & convert_adjust into one converter
-add average color adjust to convert_masked
-allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size
-allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size
-eliminate redundant type conversions to avoid multiple round-off errors
-refactor loops for vectorization/speed
-reorganize for clarity & style changes

TODO
- bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now
- issues with mask border giving black ring at zero erosion .. investigate
- remove GAN ??
- test enlargment factors of umeyama standard face .. match to coverage factor
- make enlargment factor a model parameter
- remove convert_adjusted and referencing code when finished

* Update Convert_Masked.py

default blur size of 2 to match original...
description of enlargement tests
breakout matrxi scaling into def

* Enlargment scale as a cli parameter

* Update cli.py

* dynamic interpolation algorithm

Compute x & y scale factors from the affine matrix on the fly by QR decomp.
Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image

* input size
input size from config

* fix issues with <1.0 erosion

* Update convert.py

* Update Convert_Adjust.py

more work on the way to merginf

* Clean up help note on sharpen

* cleanup seamless

* Delete Convert_Adjust.py

* Update umeyama.py

* Update training_data.py

* swapping

* segmentation stub

* changes to convert.str

* Update masked.py

* Backwards compatibility fix for models
Get converter running

* Convert:
Move masks to class.
bugfix blur_size
some linting

* mask fix

* convert fixes

- missing facehull_rect re-added
- coverage to %
- corrected coverage logic
- cleanup of gui option ordering

* Update cli.py

* default for blur

* Update masked.py

* added preliminary low_mem version of OriginalHighRes model plugin

* Code cleanup, minor fixes

* Update masked.py

* Update masked.py

* Add dfl mask to convert

* histogram fix & seamless location

* update

* revert

* bugfix: Load actual configuration in gui

* Standardize nn_blocks

* Update cli.py

* Minor code amends

* Fix Original HiRes model

* Add masks to preview output for mask trainers
refactor trainer.__base.py

* Masked trainers converter support

* convert bugfix

* Bugfix: Converter for masked (dfl/dfaker) trainers

* Additional Losses (#592)

* initial upload

* Delete blur.py

* default initializer = He instead of Glorot (#588)

* Allow kernel_initializer to be overridable

* Add ICNR Initializer option for upscale on all models.

* Hopefully fixes RSoDs with original-highres model plugin

* remove debug line

* Original-HighRes model plugin Red Screen of Death fix, take #2

* Move global options to _base. Rename Villain model

* clipnorm and res block biases

* scale the end of res block

* res block

* dfaker pre-activation res

* OHRES pre-activation

* villain pre-activation

* tabs/space in nn_blocks

* fix for histogram with mask all set to zero

* fix to prevent two networks with same name

* GUI: Wider tooltips. Improve TQDM capture

* Fix regex bug

* Convert padding=48 to ratio of image size

* Add size option to alignments tool extract

* Pass through training image size to convert from model

* Convert: Pull training coverage from model

* convert: coverage, blur and erode to percent

* simplify matrix scaling

* ordering of sliders in train

* Add matrix scaling to utils. Use interpolation in lib.aligner transform

* masked.py Import get_matrix_scaling from utils

* fix circular import

* Update masked.py

* quick fix for matrix scaling

* testing thus for now

* tqdm regex capture bugfix

* Minor ammends

* blur size cleanup

* Remove coverage option from convert (Now cascades from model)

* Implement convert for all model types

* Add mask option and coverage option to all existing models

* bugfix for model loading on convert

* debug print removal

* Bugfix for masks in dfl_h128 and iae

* Update preview display. Add preview scaling to cli

* mask notes

* Delete training_data_v2.py

errant file

* training data variables

* Fix timelapse function

* Add new config items to state file for legacy purposes

* Slight GUI tweak

* Raise exception if problem with loaded model

* Add Tensorboard support (Logs stored in model directory)

* ICNR fix

* loss bugfix

* convert bugfix

* Move ini files to config folder. Make TensorBoard optional

* Fix training data for unbalanced inputs/outputs

* Fix config "none" test

* Keep helptext in .ini files when saving config from GUI

* Remove frame_dims from alignments

* Add no-flip and warp-to-landmarks cli options

* Revert OHR to RC4_fix version

* Fix lowmem mode on OHR model

* padding to variable

* Save models in parallel threads

* Speed-up of res_block stability

* Automated Reflection Padding

* Reflect Padding as a training option

Includes auto-calculation of proper padding shapes, input_shapes, output_shapes

Flag included in config now

* rest of reflect padding

* Move TB logging to cli. Session info to state file

* Add session iterations to state file

* Add recent files to menu. GUI code tidy up

* [GUI] Fix recent file list update issue

* Add correct loss names to TensorBoard logs

* Update live graph to use TensorBoard and remove animation

* Fix analysis tab. GUI optimizations

* Analysis Graph popup to Tensorboard Logs

* [GUI] Bug fix for graphing for models with hypens in name

* [GUI] Correctly split loss to tabs during training

* [GUI] Add loss type selection to analysis graph

* Fix store command name in recent files. Switch to correct tab on open

* [GUI] Disable training graph when 'no-logs' is selected

* Fix graphing race condition

* rename original_hires model to unbalanced
2019-02-09 18:35:12 +00:00

279 lines
11 KiB
Python

#!/usr/bin/env python3
""" Neural Network Blocks for faceswap.py
Blocks from:
the original https://www.reddit.com/r/deepfakes/ code sample + contribs
dfaker: https://github.com/dfaker/df
shoanlu GAN: https://github.com/shaoanlu/faceswap-GAN"""
import logging
import tensorflow as tf
import keras.backend as K
from keras.layers import (add, Add, BatchNormalization, concatenate, Lambda, regularizers,
Permute, Reshape, SeparableConv2D, Softmax, UpSampling2D)
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv2D
from keras.layers.core import Activation
from keras.initializers import he_uniform, Constant
from .initializers import ICNR
from .layers import PixelShuffler, Scale, SubPixelUpscaling, ReflectionPadding2D
from .normalization import GroupNormalization, InstanceNormalization
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class NNBlocks():
""" Blocks to use for creating models """
def __init__(self, use_subpixel=False, use_icnr_init=False, use_reflect_padding=False):
logger.debug("Initializing %s: (use_subpixel: %s, use_icnr_init: %s, use_reflect_padding: %s",
self.__class__.__name__, use_subpixel, use_icnr_init, use_reflect_padding)
self.use_subpixel = use_subpixel
self.use_icnr_init = use_icnr_init
self.use_reflect_padding = use_reflect_padding
logger.debug("Initialized %s", self.__class__.__name__)
@staticmethod
def update_kwargs(kwargs):
""" Set the default kernel initializer to he_uniform() """
kwargs["kernel_initializer"] = kwargs.get("kernel_initializer", he_uniform())
return kwargs
# <<< Original Model Blocks >>> #
def conv(self, inp, filters, kernel_size=5, strides=2, padding='same', use_instance_norm=False, res_block_follows=False, **kwargs):
""" Convolution Layer"""
logger.debug("inp: %s, filters: %s, kernel_size: %s, strides: %s, use_instance_norm: %s, "
"kwargs: %s", inp, filters, kernel_size, strides, use_instance_norm, kwargs)
kwargs = self.update_kwargs(kwargs)
if self.use_reflect_padding:
inp = ReflectionPadding2D(stride=strides, kernel_size=kernel_size)(inp)
padding = 'valid'
var_x = Conv2D(filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
**kwargs)(inp)
if use_instance_norm:
var_x = InstanceNormalization()(var_x)
if not res_block_follows:
var_x = LeakyReLU(0.1)(var_x)
return var_x
def upscale(self, inp, filters, kernel_size=3, padding= 'same', use_instance_norm=False, res_block_follows=False, **kwargs):
""" Upscale Layer """
logger.debug("inp: %s, filters: %s, kernel_size: %s, use_instance_norm: %s, kwargs: %s",
inp, filters, kernel_size, use_instance_norm, kwargs)
kwargs = self.update_kwargs(kwargs)
if self.use_reflect_padding:
inp = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(inp)
padding = 'valid'
if self.use_icnr_init:
kwargs["kernel_initializer"] = ICNR(initializer=kwargs["kernel_initializer"])
var_x = Conv2D(filters * 4,
kernel_size=kernel_size,
padding=padding,
**kwargs)(inp)
if use_instance_norm:
var_x = InstanceNormalization()(var_x)
if not res_block_follows:
var_x = LeakyReLU(0.1)(var_x)
if self.use_subpixel:
var_x = SubPixelUpscaling()(var_x)
else:
var_x = PixelShuffler()(var_x)
return var_x
# <<< DFaker Model Blocks >>> #
def res_block(self, inp, filters, kernel_size=3, padding= 'same', **kwargs):
""" Residual block """
logger.debug("inp: %s, filters: %s, kernel_size: %s, kwargs: %s",
inp, filters, kernel_size, kwargs)
kwargs = self.update_kwargs(kwargs)
var_x = LeakyReLU(alpha=0.2)(inp)
if self.use_reflect_padding:
var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
padding = 'valid'
var_x = Conv2D(filters,
kernel_size=kernel_size,
padding=padding,
**kwargs)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
if self.use_reflect_padding:
var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
padding = 'valid'
var_x = Conv2D(filters,
kernel_size=kernel_size,
padding=padding,
**kwargs)(var_x)
var_x = Scale(gamma_init=Constant(value=0.1))(var_x)
var_x = Add()([var_x, inp])
var_x = LeakyReLU(alpha=0.2)(var_x)
return var_x
# <<< Unbalanced Model Blocks >>> #
def conv_sep(self, inp, filters, kernel_size=5, strides=2, **kwargs):
""" Seperable Convolution Layer """
logger.debug("inp: %s, filters: %s, kernel_size: %s, strides: %s, kwargs: %s",
inp, filters, kernel_size, strides, kwargs)
kwargs = self.update_kwargs(kwargs)
var_x = SeparableConv2D(filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
**kwargs)(inp)
var_x = Activation("relu")(var_x)
return var_x
# <<< GAN V2.2 Blocks >>> #
# TODO Merge these into NNBLock class when porting GAN2.2
# Gan Constansts:
GAN22_CONV_INIT = "he_normal"
GAN22_REGULARIZER = 1e-4
# Gan Blocks:
def normalization(inp, norm='none', group='16'):
""" GAN Normalization """
if norm == 'layernorm':
var_x = GroupNormalization(group=group)(inp)
elif norm == 'batchnorm':
var_x = BatchNormalization()(inp)
elif norm == 'groupnorm':
var_x = GroupNormalization(group=16)(inp)
elif norm == 'instancenorm':
var_x = InstanceNormalization()(inp)
elif norm == 'hybrid':
if group % 2 == 1:
raise ValueError("Output channels must be an even number for hybrid norm, "
"received {}.".format(group))
filt = group
var_x_0 = Lambda(lambda var_x: var_x[..., :filt // 2])(var_x)
var_x_1 = Lambda(lambda var_x: var_x[..., filt // 2:])(var_x)
var_x_0 = Conv2D(filt // 2,
kernel_size=1,
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
kernel_initializer=GAN22_CONV_INIT)(var_x_0)
var_x_1 = InstanceNormalization()(var_x_1)
var_x = concatenate([var_x_0, var_x_1], axis=-1)
else:
var_x = inp
return var_x
def upscale_ps(inp, filters, initializer, use_norm=False, norm="none"):
""" GAN Upscaler - Pixel Shuffler """
var_x = Conv2D(filters * 4,
kernel_size=3,
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
kernel_initializer=initializer,
padding="same")(inp)
var_x = LeakyReLU(0.2)(var_x)
var_x = normalization(var_x, norm, filters) if use_norm else var_x
var_x = PixelShuffler()(var_x)
return var_x
def upscale_nn(inp, filters, use_norm=False, norm="none"):
""" GAN Neural Network """
var_x = UpSampling2D()(inp)
var_x = reflect_padding_2d(var_x, 1)
var_x = Conv2D(filters,
kernel_size=3,
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
kernel_initializer="he_normal")(var_x)
var_x = normalization(var_x, norm, filters) if use_norm else var_x
return var_x
def reflect_padding_2d(inp, pad=1):
""" GAN Reflect Padding (2D) """
var_x = Lambda(lambda var_x: tf.pad(var_x,
[[0, 0], [pad, pad], [pad, pad], [0, 0]],
mode="REFLECT"))(inp)
return var_x
def conv_gan(inp, filters, use_norm=False, strides=2, norm='none'):
""" GAN Conv Block """
var_x = Conv2D(filters,
kernel_size=3,
strides=strides,
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
kernel_initializer=GAN22_CONV_INIT,
use_bias=False,
padding="same")(inp)
var_x = Activation("relu")(var_x)
var_x = normalization(var_x, norm, filters) if use_norm else var_x
return var_x
def conv_d_gan(inp, filters, use_norm=False, norm='none'):
""" GAN Discriminator Conv Block """
var_x = inp
var_x = Conv2D(filters,
kernel_size=4,
strides=2,
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
kernel_initializer=GAN22_CONV_INIT,
use_bias=False,
padding="same")(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = normalization(var_x, norm, filters) if use_norm else var_x
return var_x
def res_block_gan(inp, filters, use_norm=False, norm='none'):
""" GAN Res Block """
var_x = Conv2D(filters,
kernel_size=3,
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
kernel_initializer=GAN22_CONV_INIT,
use_bias=False,
padding="same")(inp)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = normalization(var_x, norm, filters) if use_norm else var_x
var_x = Conv2D(filters,
kernel_size=3,
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
kernel_initializer=GAN22_CONV_INIT,
use_bias=False,
padding="same")(var_x)
var_x = add([var_x, inp])
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = normalization(var_x, norm, filters) if use_norm else var_x
return var_x
def self_attn_block(inp, n_c, squeeze_factor=8):
""" GAN Self Attention Block
Code borrows from https://github.com/taki0112/Self-Attention-GAN-Tensorflow
"""
msg = "Input channels must be >= {}, recieved nc={}".format(squeeze_factor, n_c)
assert n_c // squeeze_factor > 0, msg
var_x = inp
shape_x = var_x.get_shape().as_list()
var_f = Conv2D(n_c // squeeze_factor, 1,
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER))(var_x)
var_g = Conv2D(n_c // squeeze_factor, 1,
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER))(var_x)
var_h = Conv2D(n_c, 1, kernel_regularizer=regularizers.l2(GAN22_REGULARIZER))(var_x)
shape_f = var_f.get_shape().as_list()
shape_g = var_g.get_shape().as_list()
shape_h = var_h.get_shape().as_list()
flat_f = Reshape((-1, shape_f[-1]))(var_f)
flat_g = Reshape((-1, shape_g[-1]))(var_g)
flat_h = Reshape((-1, shape_h[-1]))(var_h)
var_s = Lambda(lambda var_x: K.batch_dot(var_x[0],
Permute((2, 1))(var_x[1])))([flat_g, flat_f])
beta = Softmax(axis=-1)(var_s)
var_o = Lambda(lambda var_x: K.batch_dot(var_x[0], var_x[1]))([beta, flat_h])
var_o = Reshape(shape_x[1:])(var_o)
var_o = Scale()(var_o)
out = add([var_o, inp])
return out