mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-07 10:43:27 -04:00
* model_refactor (#571) * original model to new structure * IAE model to new structure * OriginalHiRes to new structure * Fix trainer for different resolutions * Initial config implementation * Configparse library added * improved training data loader * dfaker model working * Add logging to training functions * Non blocking input for cli training * Add error handling to threads. Add non-mp queues to queue_handler * Improved Model Building and NNMeta * refactor lib/models * training refactor. DFL H128 model Implementation * Dfaker - use hashes * Move timelapse. Remove perceptual loss arg * Update INSTALL.md. Add logger formatting. Update Dfaker training * DFL h128 partially ported * Add mask to dfaker (#573) * Remove old models. Add mask to dfaker * dfl mask. Make masks selectable in config (#575) * DFL H128 Mask. Mask type selectable in config. * remove gan_v2_2 * Creating Input Size config for models Creating Input Size config for models Will be used downstream in converters. Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes) * Add mask loss options to config * MTCNN options to config.ini. Remove GAN config. Update USAGE.md * Add sliders for numerical values in GUI * Add config plugins menu to gui. Validate config * Only backup model if loss has dropped. Get training working again * bugfixes * Standardise loss printing * GUI idle cpu fixes. Graph loss fix. * mutli-gpu logging bugfix * Merge branch 'staging' into train_refactor * backup state file * Crash protection: Only backup if both total losses have dropped * Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes) * Load and save model structure with weights * Slight code update * Improve config loader. Add subpixel opt to all models. Config to state * Show samples... wrong input * Remove AE topology. Add input/output shapes to State * Port original_villain (birb/VillainGuy) model to faceswap * Add plugin info to GUI config pages * Load input shape from state. IAE Config options. * Fix transform_kwargs. Coverage to ratio. Bugfix mask detection * Suppress keras userwarnings. Automate zoom. Coverage_ratio to model def. * Consolidation of converters & refactor (#574) * Consolidation of converters & refactor Initial Upload of alpha Items - consolidate convert_mased & convert_adjust into one converter -add average color adjust to convert_masked -allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size -allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size -eliminate redundant type conversions to avoid multiple round-off errors -refactor loops for vectorization/speed -reorganize for clarity & style changes TODO - bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now - issues with mask border giving black ring at zero erosion .. investigate - remove GAN ?? - test enlargment factors of umeyama standard face .. match to coverage factor - make enlargment factor a model parameter - remove convert_adjusted and referencing code when finished * Update Convert_Masked.py default blur size of 2 to match original... description of enlargement tests breakout matrxi scaling into def * Enlargment scale as a cli parameter * Update cli.py * dynamic interpolation algorithm Compute x & y scale factors from the affine matrix on the fly by QR decomp. Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image * input size input size from config * fix issues with <1.0 erosion * Update convert.py * Update Convert_Adjust.py more work on the way to merginf * Clean up help note on sharpen * cleanup seamless * Delete Convert_Adjust.py * Update umeyama.py * Update training_data.py * swapping * segmentation stub * changes to convert.str * Update masked.py * Backwards compatibility fix for models Get converter running * Convert: Move masks to class. bugfix blur_size some linting * mask fix * convert fixes - missing facehull_rect re-added - coverage to % - corrected coverage logic - cleanup of gui option ordering * Update cli.py * default for blur * Update masked.py * added preliminary low_mem version of OriginalHighRes model plugin * Code cleanup, minor fixes * Update masked.py * Update masked.py * Add dfl mask to convert * histogram fix & seamless location * update * revert * bugfix: Load actual configuration in gui * Standardize nn_blocks * Update cli.py * Minor code amends * Fix Original HiRes model * Add masks to preview output for mask trainers refactor trainer.__base.py * Masked trainers converter support * convert bugfix * Bugfix: Converter for masked (dfl/dfaker) trainers * Additional Losses (#592) * initial upload * Delete blur.py * default initializer = He instead of Glorot (#588) * Allow kernel_initializer to be overridable * Add ICNR Initializer option for upscale on all models. * Hopefully fixes RSoDs with original-highres model plugin * remove debug line * Original-HighRes model plugin Red Screen of Death fix, take #2 * Move global options to _base. Rename Villain model * clipnorm and res block biases * scale the end of res block * res block * dfaker pre-activation res * OHRES pre-activation * villain pre-activation * tabs/space in nn_blocks * fix for histogram with mask all set to zero * fix to prevent two networks with same name * GUI: Wider tooltips. Improve TQDM capture * Fix regex bug * Convert padding=48 to ratio of image size * Add size option to alignments tool extract * Pass through training image size to convert from model * Convert: Pull training coverage from model * convert: coverage, blur and erode to percent * simplify matrix scaling * ordering of sliders in train * Add matrix scaling to utils. Use interpolation in lib.aligner transform * masked.py Import get_matrix_scaling from utils * fix circular import * Update masked.py * quick fix for matrix scaling * testing thus for now * tqdm regex capture bugfix * Minor ammends * blur size cleanup * Remove coverage option from convert (Now cascades from model) * Implement convert for all model types * Add mask option and coverage option to all existing models * bugfix for model loading on convert * debug print removal * Bugfix for masks in dfl_h128 and iae * Update preview display. Add preview scaling to cli * mask notes * Delete training_data_v2.py errant file * training data variables * Fix timelapse function * Add new config items to state file for legacy purposes * Slight GUI tweak * Raise exception if problem with loaded model * Add Tensorboard support (Logs stored in model directory) * ICNR fix * loss bugfix * convert bugfix * Move ini files to config folder. Make TensorBoard optional * Fix training data for unbalanced inputs/outputs * Fix config "none" test * Keep helptext in .ini files when saving config from GUI * Remove frame_dims from alignments * Add no-flip and warp-to-landmarks cli options * Revert OHR to RC4_fix version * Fix lowmem mode on OHR model * padding to variable * Save models in parallel threads * Speed-up of res_block stability * Automated Reflection Padding * Reflect Padding as a training option Includes auto-calculation of proper padding shapes, input_shapes, output_shapes Flag included in config now * rest of reflect padding * Move TB logging to cli. Session info to state file * Add session iterations to state file * Add recent files to menu. GUI code tidy up * [GUI] Fix recent file list update issue * Add correct loss names to TensorBoard logs * Update live graph to use TensorBoard and remove animation * Fix analysis tab. GUI optimizations * Analysis Graph popup to Tensorboard Logs * [GUI] Bug fix for graphing for models with hypens in name * [GUI] Correctly split loss to tabs during training * [GUI] Add loss type selection to analysis graph * Fix store command name in recent files. Switch to correct tab on open * [GUI] Disable training graph when 'no-logs' is selected * Fix graphing race condition * rename original_hires model to unbalanced
279 lines
11 KiB
Python
279 lines
11 KiB
Python
#!/usr/bin/env python3
|
|
""" Neural Network Blocks for faceswap.py
|
|
Blocks from:
|
|
the original https://www.reddit.com/r/deepfakes/ code sample + contribs
|
|
dfaker: https://github.com/dfaker/df
|
|
shoanlu GAN: https://github.com/shaoanlu/faceswap-GAN"""
|
|
|
|
import logging
|
|
import tensorflow as tf
|
|
import keras.backend as K
|
|
|
|
from keras.layers import (add, Add, BatchNormalization, concatenate, Lambda, regularizers,
|
|
Permute, Reshape, SeparableConv2D, Softmax, UpSampling2D)
|
|
from keras.layers.advanced_activations import LeakyReLU
|
|
from keras.layers.convolutional import Conv2D
|
|
from keras.layers.core import Activation
|
|
from keras.initializers import he_uniform, Constant
|
|
from .initializers import ICNR
|
|
from .layers import PixelShuffler, Scale, SubPixelUpscaling, ReflectionPadding2D
|
|
from .normalization import GroupNormalization, InstanceNormalization
|
|
|
|
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
class NNBlocks():
|
|
""" Blocks to use for creating models """
|
|
def __init__(self, use_subpixel=False, use_icnr_init=False, use_reflect_padding=False):
|
|
logger.debug("Initializing %s: (use_subpixel: %s, use_icnr_init: %s, use_reflect_padding: %s",
|
|
self.__class__.__name__, use_subpixel, use_icnr_init, use_reflect_padding)
|
|
self.use_subpixel = use_subpixel
|
|
self.use_icnr_init = use_icnr_init
|
|
self.use_reflect_padding = use_reflect_padding
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
@staticmethod
|
|
def update_kwargs(kwargs):
|
|
""" Set the default kernel initializer to he_uniform() """
|
|
kwargs["kernel_initializer"] = kwargs.get("kernel_initializer", he_uniform())
|
|
return kwargs
|
|
|
|
# <<< Original Model Blocks >>> #
|
|
def conv(self, inp, filters, kernel_size=5, strides=2, padding='same', use_instance_norm=False, res_block_follows=False, **kwargs):
|
|
""" Convolution Layer"""
|
|
logger.debug("inp: %s, filters: %s, kernel_size: %s, strides: %s, use_instance_norm: %s, "
|
|
"kwargs: %s", inp, filters, kernel_size, strides, use_instance_norm, kwargs)
|
|
kwargs = self.update_kwargs(kwargs)
|
|
if self.use_reflect_padding:
|
|
inp = ReflectionPadding2D(stride=strides, kernel_size=kernel_size)(inp)
|
|
padding = 'valid'
|
|
var_x = Conv2D(filters,
|
|
kernel_size=kernel_size,
|
|
strides=strides,
|
|
padding=padding,
|
|
**kwargs)(inp)
|
|
if use_instance_norm:
|
|
var_x = InstanceNormalization()(var_x)
|
|
if not res_block_follows:
|
|
var_x = LeakyReLU(0.1)(var_x)
|
|
return var_x
|
|
|
|
def upscale(self, inp, filters, kernel_size=3, padding= 'same', use_instance_norm=False, res_block_follows=False, **kwargs):
|
|
""" Upscale Layer """
|
|
logger.debug("inp: %s, filters: %s, kernel_size: %s, use_instance_norm: %s, kwargs: %s",
|
|
inp, filters, kernel_size, use_instance_norm, kwargs)
|
|
kwargs = self.update_kwargs(kwargs)
|
|
if self.use_reflect_padding:
|
|
inp = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(inp)
|
|
padding = 'valid'
|
|
if self.use_icnr_init:
|
|
kwargs["kernel_initializer"] = ICNR(initializer=kwargs["kernel_initializer"])
|
|
var_x = Conv2D(filters * 4,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
**kwargs)(inp)
|
|
if use_instance_norm:
|
|
var_x = InstanceNormalization()(var_x)
|
|
if not res_block_follows:
|
|
var_x = LeakyReLU(0.1)(var_x)
|
|
if self.use_subpixel:
|
|
var_x = SubPixelUpscaling()(var_x)
|
|
else:
|
|
var_x = PixelShuffler()(var_x)
|
|
return var_x
|
|
|
|
# <<< DFaker Model Blocks >>> #
|
|
def res_block(self, inp, filters, kernel_size=3, padding= 'same', **kwargs):
|
|
""" Residual block """
|
|
logger.debug("inp: %s, filters: %s, kernel_size: %s, kwargs: %s",
|
|
inp, filters, kernel_size, kwargs)
|
|
kwargs = self.update_kwargs(kwargs)
|
|
var_x = LeakyReLU(alpha=0.2)(inp)
|
|
if self.use_reflect_padding:
|
|
var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
|
|
padding = 'valid'
|
|
var_x = Conv2D(filters,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
**kwargs)(var_x)
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
if self.use_reflect_padding:
|
|
var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
|
|
padding = 'valid'
|
|
var_x = Conv2D(filters,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
**kwargs)(var_x)
|
|
var_x = Scale(gamma_init=Constant(value=0.1))(var_x)
|
|
var_x = Add()([var_x, inp])
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
return var_x
|
|
|
|
# <<< Unbalanced Model Blocks >>> #
|
|
def conv_sep(self, inp, filters, kernel_size=5, strides=2, **kwargs):
|
|
""" Seperable Convolution Layer """
|
|
logger.debug("inp: %s, filters: %s, kernel_size: %s, strides: %s, kwargs: %s",
|
|
inp, filters, kernel_size, strides, kwargs)
|
|
kwargs = self.update_kwargs(kwargs)
|
|
var_x = SeparableConv2D(filters,
|
|
kernel_size=kernel_size,
|
|
strides=strides,
|
|
padding='same',
|
|
**kwargs)(inp)
|
|
var_x = Activation("relu")(var_x)
|
|
return var_x
|
|
|
|
# <<< GAN V2.2 Blocks >>> #
|
|
# TODO Merge these into NNBLock class when porting GAN2.2
|
|
|
|
|
|
# Gan Constansts:
|
|
GAN22_CONV_INIT = "he_normal"
|
|
GAN22_REGULARIZER = 1e-4
|
|
|
|
|
|
# Gan Blocks:
|
|
def normalization(inp, norm='none', group='16'):
|
|
""" GAN Normalization """
|
|
if norm == 'layernorm':
|
|
var_x = GroupNormalization(group=group)(inp)
|
|
elif norm == 'batchnorm':
|
|
var_x = BatchNormalization()(inp)
|
|
elif norm == 'groupnorm':
|
|
var_x = GroupNormalization(group=16)(inp)
|
|
elif norm == 'instancenorm':
|
|
var_x = InstanceNormalization()(inp)
|
|
elif norm == 'hybrid':
|
|
if group % 2 == 1:
|
|
raise ValueError("Output channels must be an even number for hybrid norm, "
|
|
"received {}.".format(group))
|
|
filt = group
|
|
var_x_0 = Lambda(lambda var_x: var_x[..., :filt // 2])(var_x)
|
|
var_x_1 = Lambda(lambda var_x: var_x[..., filt // 2:])(var_x)
|
|
var_x_0 = Conv2D(filt // 2,
|
|
kernel_size=1,
|
|
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
|
|
kernel_initializer=GAN22_CONV_INIT)(var_x_0)
|
|
var_x_1 = InstanceNormalization()(var_x_1)
|
|
var_x = concatenate([var_x_0, var_x_1], axis=-1)
|
|
else:
|
|
var_x = inp
|
|
return var_x
|
|
|
|
|
|
def upscale_ps(inp, filters, initializer, use_norm=False, norm="none"):
|
|
""" GAN Upscaler - Pixel Shuffler """
|
|
var_x = Conv2D(filters * 4,
|
|
kernel_size=3,
|
|
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
|
|
kernel_initializer=initializer,
|
|
padding="same")(inp)
|
|
var_x = LeakyReLU(0.2)(var_x)
|
|
var_x = normalization(var_x, norm, filters) if use_norm else var_x
|
|
var_x = PixelShuffler()(var_x)
|
|
return var_x
|
|
|
|
|
|
def upscale_nn(inp, filters, use_norm=False, norm="none"):
|
|
""" GAN Neural Network """
|
|
var_x = UpSampling2D()(inp)
|
|
var_x = reflect_padding_2d(var_x, 1)
|
|
var_x = Conv2D(filters,
|
|
kernel_size=3,
|
|
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
|
|
kernel_initializer="he_normal")(var_x)
|
|
var_x = normalization(var_x, norm, filters) if use_norm else var_x
|
|
return var_x
|
|
|
|
|
|
def reflect_padding_2d(inp, pad=1):
|
|
""" GAN Reflect Padding (2D) """
|
|
var_x = Lambda(lambda var_x: tf.pad(var_x,
|
|
[[0, 0], [pad, pad], [pad, pad], [0, 0]],
|
|
mode="REFLECT"))(inp)
|
|
return var_x
|
|
|
|
|
|
def conv_gan(inp, filters, use_norm=False, strides=2, norm='none'):
|
|
""" GAN Conv Block """
|
|
var_x = Conv2D(filters,
|
|
kernel_size=3,
|
|
strides=strides,
|
|
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
|
|
kernel_initializer=GAN22_CONV_INIT,
|
|
use_bias=False,
|
|
padding="same")(inp)
|
|
var_x = Activation("relu")(var_x)
|
|
var_x = normalization(var_x, norm, filters) if use_norm else var_x
|
|
return var_x
|
|
|
|
|
|
def conv_d_gan(inp, filters, use_norm=False, norm='none'):
|
|
""" GAN Discriminator Conv Block """
|
|
var_x = inp
|
|
var_x = Conv2D(filters,
|
|
kernel_size=4,
|
|
strides=2,
|
|
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
|
|
kernel_initializer=GAN22_CONV_INIT,
|
|
use_bias=False,
|
|
padding="same")(var_x)
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
var_x = normalization(var_x, norm, filters) if use_norm else var_x
|
|
return var_x
|
|
|
|
|
|
def res_block_gan(inp, filters, use_norm=False, norm='none'):
|
|
""" GAN Res Block """
|
|
var_x = Conv2D(filters,
|
|
kernel_size=3,
|
|
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
|
|
kernel_initializer=GAN22_CONV_INIT,
|
|
use_bias=False,
|
|
padding="same")(inp)
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
var_x = normalization(var_x, norm, filters) if use_norm else var_x
|
|
var_x = Conv2D(filters,
|
|
kernel_size=3,
|
|
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER),
|
|
kernel_initializer=GAN22_CONV_INIT,
|
|
use_bias=False,
|
|
padding="same")(var_x)
|
|
var_x = add([var_x, inp])
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
var_x = normalization(var_x, norm, filters) if use_norm else var_x
|
|
return var_x
|
|
|
|
|
|
def self_attn_block(inp, n_c, squeeze_factor=8):
|
|
""" GAN Self Attention Block
|
|
Code borrows from https://github.com/taki0112/Self-Attention-GAN-Tensorflow
|
|
"""
|
|
msg = "Input channels must be >= {}, recieved nc={}".format(squeeze_factor, n_c)
|
|
assert n_c // squeeze_factor > 0, msg
|
|
var_x = inp
|
|
shape_x = var_x.get_shape().as_list()
|
|
|
|
var_f = Conv2D(n_c // squeeze_factor, 1,
|
|
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER))(var_x)
|
|
var_g = Conv2D(n_c // squeeze_factor, 1,
|
|
kernel_regularizer=regularizers.l2(GAN22_REGULARIZER))(var_x)
|
|
var_h = Conv2D(n_c, 1, kernel_regularizer=regularizers.l2(GAN22_REGULARIZER))(var_x)
|
|
|
|
shape_f = var_f.get_shape().as_list()
|
|
shape_g = var_g.get_shape().as_list()
|
|
shape_h = var_h.get_shape().as_list()
|
|
flat_f = Reshape((-1, shape_f[-1]))(var_f)
|
|
flat_g = Reshape((-1, shape_g[-1]))(var_g)
|
|
flat_h = Reshape((-1, shape_h[-1]))(var_h)
|
|
|
|
var_s = Lambda(lambda var_x: K.batch_dot(var_x[0],
|
|
Permute((2, 1))(var_x[1])))([flat_g, flat_f])
|
|
|
|
beta = Softmax(axis=-1)(var_s)
|
|
var_o = Lambda(lambda var_x: K.batch_dot(var_x[0], var_x[1]))([beta, flat_h])
|
|
var_o = Reshape(shape_x[1:])(var_o)
|
|
var_o = Scale()(var_o)
|
|
|
|
out = add([var_o, inp])
|
|
return out
|