mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-07 10:43:27 -04:00
* model_refactor (#571) * original model to new structure * IAE model to new structure * OriginalHiRes to new structure * Fix trainer for different resolutions * Initial config implementation * Configparse library added * improved training data loader * dfaker model working * Add logging to training functions * Non blocking input for cli training * Add error handling to threads. Add non-mp queues to queue_handler * Improved Model Building and NNMeta * refactor lib/models * training refactor. DFL H128 model Implementation * Dfaker - use hashes * Move timelapse. Remove perceptual loss arg * Update INSTALL.md. Add logger formatting. Update Dfaker training * DFL h128 partially ported * Add mask to dfaker (#573) * Remove old models. Add mask to dfaker * dfl mask. Make masks selectable in config (#575) * DFL H128 Mask. Mask type selectable in config. * remove gan_v2_2 * Creating Input Size config for models Creating Input Size config for models Will be used downstream in converters. Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes) * Add mask loss options to config * MTCNN options to config.ini. Remove GAN config. Update USAGE.md * Add sliders for numerical values in GUI * Add config plugins menu to gui. Validate config * Only backup model if loss has dropped. Get training working again * bugfixes * Standardise loss printing * GUI idle cpu fixes. Graph loss fix. * mutli-gpu logging bugfix * Merge branch 'staging' into train_refactor * backup state file * Crash protection: Only backup if both total losses have dropped * Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes) * Load and save model structure with weights * Slight code update * Improve config loader. Add subpixel opt to all models. Config to state * Show samples... wrong input * Remove AE topology. Add input/output shapes to State * Port original_villain (birb/VillainGuy) model to faceswap * Add plugin info to GUI config pages * Load input shape from state. IAE Config options. * Fix transform_kwargs. Coverage to ratio. Bugfix mask detection * Suppress keras userwarnings. Automate zoom. Coverage_ratio to model def. * Consolidation of converters & refactor (#574) * Consolidation of converters & refactor Initial Upload of alpha Items - consolidate convert_mased & convert_adjust into one converter -add average color adjust to convert_masked -allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size -allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size -eliminate redundant type conversions to avoid multiple round-off errors -refactor loops for vectorization/speed -reorganize for clarity & style changes TODO - bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now - issues with mask border giving black ring at zero erosion .. investigate - remove GAN ?? - test enlargment factors of umeyama standard face .. match to coverage factor - make enlargment factor a model parameter - remove convert_adjusted and referencing code when finished * Update Convert_Masked.py default blur size of 2 to match original... description of enlargement tests breakout matrxi scaling into def * Enlargment scale as a cli parameter * Update cli.py * dynamic interpolation algorithm Compute x & y scale factors from the affine matrix on the fly by QR decomp. Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image * input size input size from config * fix issues with <1.0 erosion * Update convert.py * Update Convert_Adjust.py more work on the way to merginf * Clean up help note on sharpen * cleanup seamless * Delete Convert_Adjust.py * Update umeyama.py * Update training_data.py * swapping * segmentation stub * changes to convert.str * Update masked.py * Backwards compatibility fix for models Get converter running * Convert: Move masks to class. bugfix blur_size some linting * mask fix * convert fixes - missing facehull_rect re-added - coverage to % - corrected coverage logic - cleanup of gui option ordering * Update cli.py * default for blur * Update masked.py * added preliminary low_mem version of OriginalHighRes model plugin * Code cleanup, minor fixes * Update masked.py * Update masked.py * Add dfl mask to convert * histogram fix & seamless location * update * revert * bugfix: Load actual configuration in gui * Standardize nn_blocks * Update cli.py * Minor code amends * Fix Original HiRes model * Add masks to preview output for mask trainers refactor trainer.__base.py * Masked trainers converter support * convert bugfix * Bugfix: Converter for masked (dfl/dfaker) trainers * Additional Losses (#592) * initial upload * Delete blur.py * default initializer = He instead of Glorot (#588) * Allow kernel_initializer to be overridable * Add ICNR Initializer option for upscale on all models. * Hopefully fixes RSoDs with original-highres model plugin * remove debug line * Original-HighRes model plugin Red Screen of Death fix, take #2 * Move global options to _base. Rename Villain model * clipnorm and res block biases * scale the end of res block * res block * dfaker pre-activation res * OHRES pre-activation * villain pre-activation * tabs/space in nn_blocks * fix for histogram with mask all set to zero * fix to prevent two networks with same name * GUI: Wider tooltips. Improve TQDM capture * Fix regex bug * Convert padding=48 to ratio of image size * Add size option to alignments tool extract * Pass through training image size to convert from model * Convert: Pull training coverage from model * convert: coverage, blur and erode to percent * simplify matrix scaling * ordering of sliders in train * Add matrix scaling to utils. Use interpolation in lib.aligner transform * masked.py Import get_matrix_scaling from utils * fix circular import * Update masked.py * quick fix for matrix scaling * testing thus for now * tqdm regex capture bugfix * Minor ammends * blur size cleanup * Remove coverage option from convert (Now cascades from model) * Implement convert for all model types * Add mask option and coverage option to all existing models * bugfix for model loading on convert * debug print removal * Bugfix for masks in dfl_h128 and iae * Update preview display. Add preview scaling to cli * mask notes * Delete training_data_v2.py errant file * training data variables * Fix timelapse function * Add new config items to state file for legacy purposes * Slight GUI tweak * Raise exception if problem with loaded model * Add Tensorboard support (Logs stored in model directory) * ICNR fix * loss bugfix * convert bugfix * Move ini files to config folder. Make TensorBoard optional * Fix training data for unbalanced inputs/outputs * Fix config "none" test * Keep helptext in .ini files when saving config from GUI * Remove frame_dims from alignments * Add no-flip and warp-to-landmarks cli options * Revert OHR to RC4_fix version * Fix lowmem mode on OHR model * padding to variable * Save models in parallel threads * Speed-up of res_block stability * Automated Reflection Padding * Reflect Padding as a training option Includes auto-calculation of proper padding shapes, input_shapes, output_shapes Flag included in config now * rest of reflect padding * Move TB logging to cli. Session info to state file * Add session iterations to state file * Add recent files to menu. GUI code tidy up * [GUI] Fix recent file list update issue * Add correct loss names to TensorBoard logs * Update live graph to use TensorBoard and remove animation * Fix analysis tab. GUI optimizations * Analysis Graph popup to Tensorboard Logs * [GUI] Bug fix for graphing for models with hypens in name * [GUI] Correctly split loss to tabs during training * [GUI] Add loss type selection to analysis graph * Fix store command name in recent files. Switch to correct tab on open * [GUI] Disable training graph when 'no-logs' is selected * Fix graphing race condition * rename original_hires model to unbalanced
81 lines
3.1 KiB
Python
81 lines
3.1 KiB
Python
#!/usr/bin/env python3
|
|
""" Custom Initializers for faceswap.py
|
|
Initializers from:
|
|
shoanlu GAN: https://github.com/shaoanlu/faceswap-GAN"""
|
|
|
|
import sys
|
|
import inspect
|
|
import tensorflow as tf
|
|
from keras import initializers
|
|
from keras.utils.generic_utils import get_custom_objects
|
|
|
|
|
|
def icnr_keras(shape, dtype=None):
|
|
"""
|
|
Custom initializer for subpix upscaling
|
|
From https://github.com/kostyaev/ICNR
|
|
Note: upscale factor is fixed to 2, and the base initializer is fixed to random normal.
|
|
"""
|
|
# TODO Roll this into ICNR_init when porting GAN 2.2
|
|
shape = list(shape)
|
|
scale = 2
|
|
initializer = tf.keras.initializers.RandomNormal(0, 0.02)
|
|
|
|
new_shape = shape[:3] + [int(shape[3] / (scale ** 2))]
|
|
var_x = initializer(new_shape, dtype)
|
|
var_x = tf.transpose(var_x, perm=[2, 0, 1, 3])
|
|
var_x = tf.image.resize_nearest_neighbor(var_x, size=(shape[0] * scale, shape[1] * scale))
|
|
var_x = tf.space_to_depth(var_x, block_size=scale)
|
|
var_x = tf.transpose(var_x, perm=[1, 2, 0, 3])
|
|
return var_x
|
|
|
|
|
|
class ICNR(initializers.Initializer): # pylint: disable=invalid-name
|
|
'''
|
|
ICNR initializer for checkerboard artifact free sub pixel convolution
|
|
|
|
Andrew Aitken et al. Checkerboard artifact free sub-pixel convolution
|
|
https://arxiv.org/pdf/1707.02937.pdf https://distill.pub/2016/deconv-checkerboard/
|
|
|
|
Parameters:
|
|
initializer: initializer used for sub kernels (orthogonal, glorot uniform, etc.)
|
|
scale: scale factor of sub pixel convolution (upsampling from 8x8 to 16x16 is scale 2)
|
|
Return:
|
|
The modified kernel weights
|
|
Example:
|
|
x = conv2d(... weights_initializer=ICNR(initializer=he_uniform(), scale=2))
|
|
'''
|
|
|
|
def __init__(self, initializer, scale=2):
|
|
self.scale = scale
|
|
self.initializer = initializer
|
|
|
|
def __call__(self, shape, dtype='float32'): # tf needs partition_info=None
|
|
shape = list(shape)
|
|
if self.scale == 1:
|
|
return self.initializer(shape)
|
|
new_shape = shape[:3] + [shape[3] // (self.scale ** 2)]
|
|
if type(self.initializer) is dict:
|
|
self.initializer = initializers.deserialize(self.initializer)
|
|
var_x = self.initializer(new_shape, dtype)
|
|
var_x = tf.transpose(var_x, perm=[2, 0, 1, 3])
|
|
var_x = tf.image.resize_nearest_neighbor(
|
|
var_x,
|
|
size=(shape[0] * self.scale, shape[1] * self.scale),
|
|
align_corners=True)
|
|
var_x = tf.space_to_depth(var_x, block_size=self.scale, data_format='NHWC')
|
|
var_x = tf.transpose(var_x, perm=[1, 2, 0, 3])
|
|
return var_x
|
|
|
|
def get_config(self):
|
|
config = {'scale': self.scale,
|
|
'initializer': self.initializer
|
|
}
|
|
base_config = super(ICNR, self).get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
|
|
# Update initializers into Keras custom objects
|
|
for name, obj in inspect.getmembers(sys.modules[__name__]):
|
|
if inspect.isclass(obj) and obj.__module__ == __name__:
|
|
get_custom_objects().update({name: obj})
|