mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-07 10:43:27 -04:00
* model_refactor (#571) * original model to new structure * IAE model to new structure * OriginalHiRes to new structure * Fix trainer for different resolutions * Initial config implementation * Configparse library added * improved training data loader * dfaker model working * Add logging to training functions * Non blocking input for cli training * Add error handling to threads. Add non-mp queues to queue_handler * Improved Model Building and NNMeta * refactor lib/models * training refactor. DFL H128 model Implementation * Dfaker - use hashes * Move timelapse. Remove perceptual loss arg * Update INSTALL.md. Add logger formatting. Update Dfaker training * DFL h128 partially ported * Add mask to dfaker (#573) * Remove old models. Add mask to dfaker * dfl mask. Make masks selectable in config (#575) * DFL H128 Mask. Mask type selectable in config. * remove gan_v2_2 * Creating Input Size config for models Creating Input Size config for models Will be used downstream in converters. Also name change of image_shape to input_shape to clarify ( for future models with potentially different output_shapes) * Add mask loss options to config * MTCNN options to config.ini. Remove GAN config. Update USAGE.md * Add sliders for numerical values in GUI * Add config plugins menu to gui. Validate config * Only backup model if loss has dropped. Get training working again * bugfixes * Standardise loss printing * GUI idle cpu fixes. Graph loss fix. * mutli-gpu logging bugfix * Merge branch 'staging' into train_refactor * backup state file * Crash protection: Only backup if both total losses have dropped * Port OriginalHiRes_RC4 to train_refactor (OriginalHiRes) * Load and save model structure with weights * Slight code update * Improve config loader. Add subpixel opt to all models. Config to state * Show samples... wrong input * Remove AE topology. Add input/output shapes to State * Port original_villain (birb/VillainGuy) model to faceswap * Add plugin info to GUI config pages * Load input shape from state. IAE Config options. * Fix transform_kwargs. Coverage to ratio. Bugfix mask detection * Suppress keras userwarnings. Automate zoom. Coverage_ratio to model def. * Consolidation of converters & refactor (#574) * Consolidation of converters & refactor Initial Upload of alpha Items - consolidate convert_mased & convert_adjust into one converter -add average color adjust to convert_masked -allow mask transition blur size to be a fixed integer of pixels and a fraction of the facial mask size -allow erosion/dilation size to be a fixed integer of pixels and a fraction of the facial mask size -eliminate redundant type conversions to avoid multiple round-off errors -refactor loops for vectorization/speed -reorganize for clarity & style changes TODO - bug/issues with warping the new face onto a transparent old image...use a cleanup mask for now - issues with mask border giving black ring at zero erosion .. investigate - remove GAN ?? - test enlargment factors of umeyama standard face .. match to coverage factor - make enlargment factor a model parameter - remove convert_adjusted and referencing code when finished * Update Convert_Masked.py default blur size of 2 to match original... description of enlargement tests breakout matrxi scaling into def * Enlargment scale as a cli parameter * Update cli.py * dynamic interpolation algorithm Compute x & y scale factors from the affine matrix on the fly by QR decomp. Choose interpolation alogrithm for the affine warp based on an upsample or downsample for each image * input size input size from config * fix issues with <1.0 erosion * Update convert.py * Update Convert_Adjust.py more work on the way to merginf * Clean up help note on sharpen * cleanup seamless * Delete Convert_Adjust.py * Update umeyama.py * Update training_data.py * swapping * segmentation stub * changes to convert.str * Update masked.py * Backwards compatibility fix for models Get converter running * Convert: Move masks to class. bugfix blur_size some linting * mask fix * convert fixes - missing facehull_rect re-added - coverage to % - corrected coverage logic - cleanup of gui option ordering * Update cli.py * default for blur * Update masked.py * added preliminary low_mem version of OriginalHighRes model plugin * Code cleanup, minor fixes * Update masked.py * Update masked.py * Add dfl mask to convert * histogram fix & seamless location * update * revert * bugfix: Load actual configuration in gui * Standardize nn_blocks * Update cli.py * Minor code amends * Fix Original HiRes model * Add masks to preview output for mask trainers refactor trainer.__base.py * Masked trainers converter support * convert bugfix * Bugfix: Converter for masked (dfl/dfaker) trainers * Additional Losses (#592) * initial upload * Delete blur.py * default initializer = He instead of Glorot (#588) * Allow kernel_initializer to be overridable * Add ICNR Initializer option for upscale on all models. * Hopefully fixes RSoDs with original-highres model plugin * remove debug line * Original-HighRes model plugin Red Screen of Death fix, take #2 * Move global options to _base. Rename Villain model * clipnorm and res block biases * scale the end of res block * res block * dfaker pre-activation res * OHRES pre-activation * villain pre-activation * tabs/space in nn_blocks * fix for histogram with mask all set to zero * fix to prevent two networks with same name * GUI: Wider tooltips. Improve TQDM capture * Fix regex bug * Convert padding=48 to ratio of image size * Add size option to alignments tool extract * Pass through training image size to convert from model * Convert: Pull training coverage from model * convert: coverage, blur and erode to percent * simplify matrix scaling * ordering of sliders in train * Add matrix scaling to utils. Use interpolation in lib.aligner transform * masked.py Import get_matrix_scaling from utils * fix circular import * Update masked.py * quick fix for matrix scaling * testing thus for now * tqdm regex capture bugfix * Minor ammends * blur size cleanup * Remove coverage option from convert (Now cascades from model) * Implement convert for all model types * Add mask option and coverage option to all existing models * bugfix for model loading on convert * debug print removal * Bugfix for masks in dfl_h128 and iae * Update preview display. Add preview scaling to cli * mask notes * Delete training_data_v2.py errant file * training data variables * Fix timelapse function * Add new config items to state file for legacy purposes * Slight GUI tweak * Raise exception if problem with loaded model * Add Tensorboard support (Logs stored in model directory) * ICNR fix * loss bugfix * convert bugfix * Move ini files to config folder. Make TensorBoard optional * Fix training data for unbalanced inputs/outputs * Fix config "none" test * Keep helptext in .ini files when saving config from GUI * Remove frame_dims from alignments * Add no-flip and warp-to-landmarks cli options * Revert OHR to RC4_fix version * Fix lowmem mode on OHR model * padding to variable * Save models in parallel threads * Speed-up of res_block stability * Automated Reflection Padding * Reflect Padding as a training option Includes auto-calculation of proper padding shapes, input_shapes, output_shapes Flag included in config now * rest of reflect padding * Move TB logging to cli. Session info to state file * Add session iterations to state file * Add recent files to menu. GUI code tidy up * [GUI] Fix recent file list update issue * Add correct loss names to TensorBoard logs * Update live graph to use TensorBoard and remove animation * Fix analysis tab. GUI optimizations * Analysis Graph popup to Tensorboard Logs * [GUI] Bug fix for graphing for models with hypens in name * [GUI] Correctly split loss to tabs during training * [GUI] Add loss type selection to analysis graph * Fix store command name in recent files. Switch to correct tab on open * [GUI] Disable training graph when 'no-logs' is selected * Fix graphing race condition * rename original_hires model to unbalanced
153 lines
6.1 KiB
Python
153 lines
6.1 KiB
Python
#!/usr/bin python3
|
|
""" Face and landmarks detection for faceswap.py """
|
|
import logging
|
|
|
|
from dlib import rectangle as d_rectangle # pylint: disable=no-name-in-module
|
|
from lib.aligner import Extract as AlignerExtract, get_align_mat, get_matrix_scaling
|
|
|
|
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
class DetectedFace():
|
|
""" Detected face and landmark information """
|
|
def __init__( # pylint: disable=invalid-name
|
|
self, image=None, x=None, w=None, y=None, h=None,
|
|
landmarksXY=None):
|
|
logger.trace("Initializing %s", self.__class__.__name__)
|
|
self.image = image
|
|
self.x = x
|
|
self.w = w
|
|
self.y = y
|
|
self.h = h
|
|
self.landmarksXY = landmarksXY
|
|
self.hash = None # Hash must be set when the file is saved due to image compression
|
|
|
|
self.aligned = dict()
|
|
logger.trace("Initialized %s", self.__class__.__name__)
|
|
|
|
@property
|
|
def landmarks_as_xy(self):
|
|
""" Landmarks as XY """
|
|
return self.landmarksXY
|
|
|
|
def to_dlib_rect(self):
|
|
""" Return Bounding Box as Dlib Rectangle """
|
|
left = self.x
|
|
top = self.y
|
|
right = self.x + self.w
|
|
bottom = self.y + self.h
|
|
retval = d_rectangle(left, top, right, bottom)
|
|
logger.trace("Returning: %s", retval)
|
|
return retval
|
|
|
|
def from_dlib_rect(self, d_rect, image=None):
|
|
""" Set Bounding Box from a Dlib Rectangle """
|
|
logger.trace("Creating from dlib_rectangle: %s", d_rect)
|
|
if not isinstance(d_rect, d_rectangle):
|
|
raise ValueError("Supplied Bounding Box is not a dlib.rectangle.")
|
|
self.x = d_rect.left()
|
|
self.w = d_rect.right() - d_rect.left()
|
|
self.y = d_rect.top()
|
|
self.h = d_rect.bottom() - d_rect.top()
|
|
if image.any():
|
|
self.image_to_face(image)
|
|
logger.trace("Created from dlib_rectangle: (x: %s, w: %s, y: %s. h: %s)",
|
|
self.x, self.w, self.y, self.h)
|
|
|
|
def image_to_face(self, image):
|
|
""" Crop an image around bounding box to the face
|
|
and capture it's dimensions """
|
|
logger.trace("Cropping face from image")
|
|
self.image = image[self.y: self.y + self.h,
|
|
self.x: self.x + self.w]
|
|
|
|
def to_alignment(self):
|
|
""" Convert a detected face to alignment dict """
|
|
alignment = dict()
|
|
alignment["x"] = self.x
|
|
alignment["w"] = self.w
|
|
alignment["y"] = self.y
|
|
alignment["h"] = self.h
|
|
alignment["landmarksXY"] = self.landmarksXY
|
|
alignment["hash"] = self.hash
|
|
logger.trace("Returning: %s", alignment)
|
|
return alignment
|
|
|
|
def from_alignment(self, alignment, image=None):
|
|
""" Convert a face alignment to detected face object """
|
|
logger.trace("Creating from alignment: (alignment: %s, has_image: %s)",
|
|
alignment, bool(image is not None))
|
|
self.x = alignment["x"]
|
|
self.w = alignment["w"]
|
|
self.y = alignment["y"]
|
|
self.h = alignment["h"]
|
|
self.landmarksXY = alignment["landmarksXY"]
|
|
# Manual tool does not know the final hash so default to None
|
|
self.hash = alignment.get("hash", None)
|
|
if image is not None and image.any():
|
|
self.image_to_face(image)
|
|
logger.trace("Created from alignment: (x: %s, w: %s, y: %s. h: %s, "
|
|
"landmarks: %s)",
|
|
self.x, self.w, self.y, self.h, self.landmarksXY)
|
|
|
|
# <<< Aligned Face methods and properties >>> #
|
|
def load_aligned(self, image, size=256, align_eyes=False):
|
|
""" No need to load aligned information for all uses of this
|
|
class, so only call this to load the information for easy
|
|
reference to aligned properties for this face """
|
|
logger.trace("Loading aligned face: (size: %s, align_eyes: %s)", size, align_eyes)
|
|
padding = int(size * 0.1875)
|
|
self.aligned["size"] = size
|
|
self.aligned["padding"] = padding
|
|
self.aligned["align_eyes"] = align_eyes
|
|
self.aligned["matrix"] = get_align_mat(self, size, align_eyes)
|
|
if image is None:
|
|
self.aligned["face"] = None
|
|
else:
|
|
self.aligned["face"] = AlignerExtract().transform(
|
|
image,
|
|
self.aligned["matrix"],
|
|
size,
|
|
padding)
|
|
logger.trace("Loaded aligned face: %s", {key: val
|
|
for key, val in self.aligned.items()
|
|
if key != "face"})
|
|
|
|
@property
|
|
def original_roi(self):
|
|
""" Return the square aligned box location on the original
|
|
image """
|
|
roi = AlignerExtract().get_original_roi(self.aligned["matrix"],
|
|
self.aligned["size"],
|
|
self.aligned["padding"])
|
|
logger.trace("Returning: %s", roi)
|
|
return roi
|
|
|
|
@property
|
|
def aligned_landmarks(self):
|
|
""" Return the landmarks location transposed to extracted face """
|
|
landmarks = AlignerExtract().transform_points(self.landmarksXY,
|
|
self.aligned["matrix"],
|
|
self.aligned["size"],
|
|
self.aligned["padding"])
|
|
logger.trace("Returning: %s", landmarks)
|
|
return landmarks
|
|
|
|
@property
|
|
def aligned_face(self):
|
|
""" Return aligned detected face """
|
|
return self.aligned["face"]
|
|
|
|
@property
|
|
def adjusted_matrix(self):
|
|
""" Return adjusted matrix for size/padding combination """
|
|
mat = AlignerExtract().transform_matrix(self.aligned["matrix"],
|
|
self.aligned["size"],
|
|
self.aligned["padding"])
|
|
logger.trace("Returning: %s", mat)
|
|
return mat
|
|
|
|
@property
|
|
def adjusted_interpolators(self):
|
|
""" Return the interpolator and reverse interpolator for the adjusted matrix """
|
|
return get_matrix_scaling(self.adjusted_matrix)
|