1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/plugins/train/trainer/_base.py

923 lines
38 KiB
Python

#!/usr/bin/env python3
""" Base Class for Faceswap Trainer plugins. All Trainer plugins should be inherited from
this class.
At present there is only the :class:`~plugins.train.trainer.original` plugin, so that entirely
inherits from this class. If further plugins are developed, then common code should be kept here,
with "original" unique code split out to the original plugin.
"""
from __future__ import annotations
import logging
import os
import time
import typing as T
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ( # pylint:disable=no-name-in-module
errors_impl as tf_errors)
from lib.image import hex_to_rgb
from lib.training import Feeder, LearningRateFinder
from lib.utils import FaceswapError, get_folder, get_image_paths
from plugins.train._config import Config
if T.TYPE_CHECKING:
from collections.abc import Callable
from plugins.train.model._base import ModelBase
from lib.config import ConfigValueType
logger = logging.getLogger(__name__)
def _get_config(plugin_name: str,
configfile: str | None = None) -> dict[str, ConfigValueType]:
""" Return the configuration for the requested trainer.
Parameters
----------
plugin_name: str
The name of the plugin to load the configuration for
configfile: str, optional
A custom configuration file. If ``None`` then configuration is loaded from the default
:file:`.config.train.ini` file. Default: ``None``
Returns
-------
dict
The configuration dictionary for the requested plugin
"""
return Config(plugin_name, configfile=configfile).config_dict
class TrainerBase():
""" Handles the feeding of training images to Faceswap models, the generation of Tensorboard
logs and the creation of sample/time-lapse preview images.
All Trainer plugins must inherit from this class.
Parameters
----------
model: plugin from :mod:`plugins.train.model`
The model that will be running this trainer
images: dict
The file paths for the images to be trained on for each side. The dictionary should contain
2 keys ("a" and "b") with the values being a list of full paths corresponding to each side.
batch_size: int
The requested batch size for iteration to be trained through the model.
configfile: str
The path to a custom configuration file. If ``None`` is passed then configuration is loaded
from the default :file:`.config.train.ini` file.
"""
def __init__(self,
model: ModelBase,
images: dict[T.Literal["a", "b"], list[str]],
batch_size: int,
configfile: str | None) -> None:
logger.debug("Initializing %s: (model: '%s', batch_size: %s)",
self.__class__.__name__, model, batch_size)
self._model = model
self._config = self._get_config(configfile)
self._feeder = Feeder(images, model, batch_size, self._config)
self._exit_early = self._handle_lr_finder()
if self._exit_early:
return
self._model.state.add_session_batchsize(batch_size)
self._images = images
self._sides = sorted(key for key in self._images.keys())
self._tensorboard = self._set_tensorboard()
self._samples = _Samples(self._model,
self._model.coverage_ratio,
T.cast(int, self._config["mask_opacity"]),
T.cast(str, self._config["mask_color"]))
num_images = self._config.get("preview_images", 14)
assert isinstance(num_images, int)
self._timelapse = _Timelapse(self._model,
self._model.coverage_ratio,
num_images,
T.cast(int, self._config["mask_opacity"]),
T.cast(str, self._config["mask_color"]),
self._feeder,
self._images)
logger.debug("Initialized %s", self.__class__.__name__)
@property
def exit_early(self) -> bool:
""" True if the trainer should exit early, without perfoming any training steps """
return self._exit_early
def _get_config(self, configfile: str | None) -> dict[str, ConfigValueType]:
""" Get the saved training config options. Override any global settings with the setting
provided from the model's saved config.
Parameters
-----------
configfile: str
The path to a custom configuration file. If ``None`` is passed then configuration is
loaded from the default :file:`.config.train.ini` file.
Returns
-------
dict
The trainer configuration options
"""
config = _get_config(".".join(self.__module__.split(".")[-2:]),
configfile=configfile)
for key, val in config.items():
if key in self._model.config and val != self._model.config[key]:
new_val = self._model.config[key]
logger.debug("Updating global training config item for '%s' form '%s' to '%s'",
key, val, new_val)
config[key] = new_val
return config
def _handle_lr_finder(self) -> bool:
""" Handle the learning rate finder.
If this is a new model, then find the optimal learning rate and return ``True`` if user has
just requested the graph, otherwise return ``False`` to continue training
If it as existing model, set the learning rate to the value found by the learing rate
finder and return ``False`` to continue training
Returns
-------
bool
``True`` if the learning rate finder options dictate that training should not continue
after finding the optimal leaning rate
"""
if not self._model.command_line_arguments.use_lr_finder:
return False
if self._model.state.iterations == 0 and self._model.state.session_id == 1:
lrf = LearningRateFinder(self._model, self._config, self._feeder)
success = lrf.find()
return self._config["lr_finder_mode"] == "graph_and_exit" or not success
learning_rate = self._model.state.sessions[1]["config"]["learning_rate"]
logger.info("Setting learning rate from Learning Rate Finder to %s",
f"{learning_rate:.1e}")
return False
def _set_tensorboard(self) -> tf.keras.callbacks.TensorBoard:
""" Set up Tensorboard callback for logging loss.
Bypassed if command line option "no-logs" has been selected.
Returns
-------
:class:`tf.keras.callbacks.TensorBoard`
Tensorboard object for the the current training session.
"""
if self._model.state.current_session["no_logs"]:
logger.verbose("TensorBoard logging disabled") # type: ignore
return None
logger.debug("Enabling TensorBoard Logging")
logger.debug("Setting up TensorBoard Logging")
log_dir = os.path.join(str(self._model.io.model_dir),
f"{self._model.name}_logs",
f"session_{self._model.state.session_id}")
tensorboard = tf.keras.callbacks.TensorBoard(log_dir=log_dir,
histogram_freq=0, # Must be 0 or hangs
write_graph=True,
write_images=False,
update_freq="batch",
profile_batch=0,
embeddings_freq=0,
embeddings_metadata=None)
tensorboard.set_model(self._model.model)
tensorboard.on_train_begin(0)
logger.verbose("Enabled TensorBoard Logging") # type: ignore
return tensorboard
def toggle_mask(self) -> None:
""" Toggle the mask overlay on or off based on user input. """
self._samples.toggle_mask_display()
def train_one_step(self,
viewer: Callable[[np.ndarray, str], None] | None,
timelapse_kwargs: dict[T.Literal["input_a", "input_b", "output"],
str] | None) -> None:
""" Running training on a batch of images for each side.
Triggered from the training cycle in :class:`scripts.train.Train`.
* Runs a training batch through the model.
* Outputs the iteration's loss values to the console
* Logs loss to Tensorboard, if logging is requested.
* If a preview or time-lapse has been requested, then pushes sample images through the \
model to generate the previews
* Creates a snapshot if the total iterations trained so far meet the requested snapshot \
criteria
Notes
-----
As every iteration is called explicitly, the Parameters defined should always be ``None``
except on save iterations.
Parameters
----------
viewer: :func:`scripts.train.Train._show` or ``None``
The function that will display the preview image
timelapse_kwargs: dict
The keyword arguments for generating time-lapse previews. If a time-lapse preview is
not required then this should be ``None``. Otherwise all values should be full paths
the keys being `input_a`, `input_b`, `output`.
"""
self._model.state.increment_iterations()
logger.trace("Training one step: (iteration: %s)", self._model.iterations) # type: ignore
snapshot_interval = self._model.command_line_arguments.snapshot_interval
do_snapshot = (snapshot_interval != 0 and
self._model.iterations - 1 >= snapshot_interval and
(self._model.iterations - 1) % snapshot_interval == 0)
model_inputs, model_targets = self._feeder.get_batch()
try:
loss: list[float] = self._model.model.train_on_batch(model_inputs, y=model_targets)
except tf_errors.ResourceExhaustedError as err:
msg = ("You do not have enough GPU memory available to train the selected model at "
"the selected settings. You can try a number of things:"
"\n1) Close any other application that is using your GPU (web browsers are "
"particularly bad for this)."
"\n2) Lower the batchsize (the amount of images fed into the model each "
"iteration)."
"\n3) Try enabling 'Mixed Precision' training."
"\n4) Use a more lightweight model, or select the model's 'LowMem' option "
"(in config) if it has one.")
raise FaceswapError(msg) from err
self._log_tensorboard(loss)
loss = self._collate_and_store_loss(loss[1:])
self._print_loss(loss)
if do_snapshot:
self._model.io.snapshot()
self._update_viewers(viewer, timelapse_kwargs)
def _log_tensorboard(self, loss: list[float]) -> None:
""" Log current loss to Tensorboard log files
Parameters
----------
loss: list
The list of loss ``floats`` output from the model
"""
if not self._tensorboard:
return
logger.trace("Updating TensorBoard log") # type: ignore
logs = {log[0]: log[1]
for log in zip(self._model.state.loss_names, loss)}
# Bug in TF 2.8/2.9/2.10 where batch recording got deleted.
# ref: https://github.com/keras-team/keras/issues/16173
with tf.summary.record_if(True), self._tensorboard._train_writer.as_default(): # noqa:E501 pylint:disable=protected-access,not-context-manager
for name, value in logs.items():
tf.summary.scalar(
"batch_" + name,
value,
step=self._tensorboard._train_step) # pylint:disable=protected-access
# TODO revert this code if fixed in tensorflow
# self._tensorboard.on_train_batch_end(self._model.iterations, logs=logs)
def _collate_and_store_loss(self, loss: list[float]) -> list[float]:
""" Collate the loss into totals for each side.
The losses are summed into a total for each side. Loss totals are added to
:attr:`model.state._history` to track the loss drop per save iteration for backup purposes.
If NaN protection is enabled, Checks for NaNs and raises an error if detected.
Parameters
----------
loss: list
The list of loss ``floats`` for each side this iteration (excluding total combined
loss)
Returns
-------
list
List of 2 ``floats`` which is the total loss for each side (eg sum of face + mask loss)
Raises
------
FaceswapError
If a NaN is detected, a :class:`FaceswapError` will be raised
"""
# NaN protection
if self._config["nan_protection"] and not all(np.isfinite(val) for val in loss):
logger.critical("NaN Detected. Loss: %s", loss)
raise FaceswapError("A NaN was detected and you have NaN protection enabled. Training "
"has been terminated.")
split = len(loss) // 2
combined_loss = [sum(loss[:split]), sum(loss[split:])]
self._model.add_history(combined_loss)
logger.trace("original loss: %s, combined_loss: %s", loss, combined_loss) # type: ignore
return combined_loss
def _print_loss(self, loss: list[float]) -> None:
""" Outputs the loss for the current iteration to the console.
Parameters
----------
loss: list
The loss for each side. List should contain 2 ``floats`` side "a" in position 0 and
side "b" in position `.
"""
output = ", ".join([f"Loss {side}: {side_loss:.5f}"
for side, side_loss in zip(("A", "B"), loss)])
timestamp = time.strftime("%H:%M:%S")
output = f"[{timestamp}] [#{self._model.iterations:05d}] {output}"
try:
print(f"\r{output}", end="")
except OSError as err:
logger.warning("Swallowed OS Error caused by Tensorflow distributed training. output "
"line: %s, error: %s", output, str(err))
def _update_viewers(self,
viewer: Callable[[np.ndarray, str], None] | None,
timelapse_kwargs: dict[T.Literal["input_a", "input_b", "output"],
str] | None) -> None:
""" Update the preview viewer and timelapse output
Parameters
----------
viewer: :func:`scripts.train.Train._show` or ``None``
The function that will display the preview image
timelapse_kwargs: dict
The keyword arguments for generating time-lapse previews. If a time-lapse preview is
not required then this should be ``None``. Otherwise all values should be full paths
the keys being `input_a`, `input_b`, `output`.
"""
if viewer is not None:
self._samples.images = self._feeder.generate_preview()
samples = self._samples.show_sample()
if samples is not None:
viewer(samples,
"Training - 'S': Save Now. 'R': Refresh Preview. 'M': Toggle Mask. 'F': "
"Toggle Screen Fit-Actual Size. 'ENTER': Save and Quit")
if timelapse_kwargs:
self._timelapse.output_timelapse(timelapse_kwargs)
def clear_tensorboard(self) -> None:
""" Stop Tensorboard logging.
Tensorboard logging needs to be explicitly shutdown on training termination. Called from
:class:`scripts.train.Train` when training is stopped.
"""
if not self._tensorboard:
return
logger.debug("Ending Tensorboard Session: %s", self._tensorboard)
self._tensorboard.on_train_end(None)
class _Samples(): # pylint:disable=too-few-public-methods
""" Compile samples for display for preview and time-lapse
Parameters
----------
model: plugin from :mod:`plugins.train.model`
The selected model that will be running this trainer
coverage_ratio: float
Ratio of face to be cropped out of the training image.
mask_opacity: int
The opacity (as a percentage) to use for the mask overlay
mask_color: str
The hex RGB value to use the mask overlay
Attributes
----------
images: dict
The :class:`numpy.ndarray` training images for generating previews on each side. The
dictionary should contain 2 keys ("a" and "b") with the values being the training images
for generating samples corresponding to each side.
"""
def __init__(self,
model: ModelBase,
coverage_ratio: float,
mask_opacity: int,
mask_color: str) -> None:
logger.debug("Initializing %s: model: '%s', coverage_ratio: %s, mask_opacity: %s, "
"mask_color: %s)",
self.__class__.__name__, model, coverage_ratio, mask_opacity, mask_color)
self._model = model
self._display_mask = model.config["learn_mask"] or model.config["penalized_mask_loss"]
self.images: dict[T.Literal["a", "b"], list[np.ndarray]] = {}
self._coverage_ratio = coverage_ratio
self._mask_opacity = mask_opacity / 100.0
self._mask_color = np.array(hex_to_rgb(mask_color))[..., 2::-1] / 255.
logger.debug("Initialized %s", self.__class__.__name__)
def toggle_mask_display(self) -> None:
""" Toggle the mask overlay on or off depending on user input. """
if not (self._model.config["learn_mask"] or self._model.config["penalized_mask_loss"]):
return
display_mask = not self._display_mask
print("") # Break to not garble loss output
logger.info("Toggling mask display %s...", "on" if display_mask else "off")
self._display_mask = display_mask
def show_sample(self) -> np.ndarray:
""" Compile a preview image.
Returns
-------
:class:`numpy.ndarry`
A compiled preview image ready for display or saving
"""
logger.debug("Showing sample")
feeds: dict[T.Literal["a", "b"], np.ndarray] = {}
for idx, side in enumerate(T.get_args(T.Literal["a", "b"])):
feed = self.images[side][0]
input_shape = self._model.model.input_shape[idx][1:]
if input_shape[0] / feed.shape[1] != 1.0:
feeds[side] = self._resize_sample(side, feed, input_shape[0])
else:
feeds[side] = feed
preds = self._get_predictions(feeds["a"], feeds["b"])
return self._compile_preview(preds)
@classmethod
def _resize_sample(cls,
side: T.Literal["a", "b"],
sample: np.ndarray,
target_size: int) -> np.ndarray:
""" Resize a given image to the target size.
Parameters
----------
side: str
The side ("a" or "b") that the samples are being generated for
sample: :class:`numpy.ndarray`
The sample to be resized
target_size: int
The size that the sample should be resized to
Returns
-------
:class:`numpy.ndarray`
The sample resized to the target size
"""
scale = target_size / sample.shape[1]
if scale == 1.0:
# cv2 complains if we don't do this :/
return np.ascontiguousarray(sample)
logger.debug("Resizing sample: (side: '%s', sample.shape: %s, target_size: %s, scale: %s)",
side, sample.shape, target_size, scale)
interpn = cv2.INTER_CUBIC if scale > 1.0 else cv2.INTER_AREA
retval = np.array([cv2.resize(img, (target_size, target_size), interpolation=interpn)
for img in sample])
logger.debug("Resized sample: (side: '%s' shape: %s)", side, retval.shape)
return retval
def _get_predictions(self, feed_a: np.ndarray, feed_b: np.ndarray) -> dict[str, np.ndarray]:
""" Feed the samples to the model and return predictions
Parameters
----------
feed_a: :class:`numpy.ndarray`
Feed images for the "a" side
feed_a: :class:`numpy.ndarray`
Feed images for the "b" side
Returns
-------
list:
List of :class:`numpy.ndarray` of predictions received from the model
"""
logger.debug("Getting Predictions")
preds: dict[str, np.ndarray] = {}
# Calling model.predict() can lead to both VRAM and system memory leaks, so call model
# directly
standard = self._model.model([feed_a, feed_b])
swapped = self._model.model([feed_b, feed_a])
if self._model.config["learn_mask"]: # Add mask to 4th channel of final output
standard = [np.concatenate(side[-2:], axis=-1)
for side in [[s.numpy() for s in t] for t in standard]]
swapped = [np.concatenate(side[-2:], axis=-1)
for side in [[s.numpy() for s in t] for t in swapped]]
else: # Retrieve final output
standard = [side[-1] if isinstance(side, list) else side
for side in [t.numpy() for t in standard]]
swapped = [side[-1] if isinstance(side, list) else side
for side in [t.numpy() for t in swapped]]
preds["a_a"] = standard[0]
preds["b_b"] = standard[1]
preds["a_b"] = swapped[0]
preds["b_a"] = swapped[1]
logger.debug("Returning predictions: %s", {key: val.shape for key, val in preds.items()})
return preds
def _compile_preview(self, predictions: dict[str, np.ndarray]) -> np.ndarray:
""" Compile predictions and images into the final preview image.
Parameters
----------
predictions: dict
The predictions from the model
Returns
-------
:class:`numpy.ndarry`
A compiled preview image ready for display or saving
"""
figures: dict[T.Literal["a", "b"], np.ndarray] = {}
headers: dict[T.Literal["a", "b"], np.ndarray] = {}
for side, samples in self.images.items():
other_side = "a" if side == "b" else "b"
preds = [predictions[f"{side}_{side}"],
predictions[f"{other_side}_{side}"]]
display = self._to_full_frame(side, samples, preds)
headers[side] = self._get_headers(side, display[0].shape[1])
figures[side] = np.stack([display[0], display[1], display[2], ], axis=1)
if self.images[side][1].shape[0] % 2 == 1:
figures[side] = np.concatenate([figures[side],
np.expand_dims(figures[side][0], 0)])
width = 4
if width // 2 != 1:
headers = self._duplicate_headers(headers, width // 2)
header = np.concatenate([headers["a"], headers["b"]], axis=1)
figure = np.concatenate([figures["a"], figures["b"]], axis=0)
height = int(figure.shape[0] / width)
figure = figure.reshape((width, height) + figure.shape[1:])
figure = _stack_images(figure)
figure = np.concatenate((header, figure), axis=0)
logger.debug("Compiled sample")
return np.clip(figure * 255, 0, 255).astype('uint8')
def _to_full_frame(self,
side: T.Literal["a", "b"],
samples: list[np.ndarray],
predictions: list[np.ndarray]) -> list[np.ndarray]:
""" Patch targets and prediction images into images of model output size.
Parameters
----------
side: {"a" or "b"}
The side that these samples are for
samples: list
List of :class:`numpy.ndarray` of feed images and sample images
predictions: list
List of :class: `numpy.ndarray` of predictions from the model
Returns
-------
list
The images resized and collated for display in the preview frame
"""
logger.debug("side: '%s', number of sample arrays: %s, prediction.shapes: %s)",
side, len(samples), [pred.shape for pred in predictions])
faces, full = samples[:2]
if self._model.color_order.lower() == "rgb": # Switch color order for RGB model display
full = full[..., ::-1]
faces = faces[..., ::-1]
predictions = [pred[..., 2::-1] for pred in predictions]
full = self._process_full(side, full, predictions[0].shape[1], (0., 0., 1.0))
images = [faces] + predictions
if self._display_mask:
images = self._compile_masked(images, samples[-1])
elif self._model.config["learn_mask"]:
# Remove masks when learn mask is selected but mask toggle is off
images = [batch[..., :3] for batch in images]
images = [self._overlay_foreground(full.copy(), image) for image in images]
return images
def _process_full(self,
side: T.Literal["a", "b"],
images: np.ndarray,
prediction_size: int,
color: tuple[float, float, float]) -> np.ndarray:
""" Add a frame overlay to preview images indicating the region of interest.
This applies the red border that appears in the preview images.
Parameters
----------
side: {"a" or "b"}
The side that these samples are for
images: :class:`numpy.ndarray`
The input training images to to process
prediction_size: int
The size of the predicted output from the model
color: tuple
The (Blue, Green, Red) color to use for the frame
Returns
-------
:class:`numpy,ndarray`
The input training images, sized for output and annotated for coverage
"""
logger.debug("full_size: %s, prediction_size: %s, color: %s",
images.shape[1], prediction_size, color)
display_size = int((prediction_size / self._coverage_ratio // 2) * 2)
images = self._resize_sample(side, images, display_size) # Resize targets to display size
padding = (display_size - prediction_size) // 2
if padding == 0:
logger.debug("Resized background. Shape: %s", images.shape)
return images
length = display_size // 4
t_l, b_r = (padding - 1, display_size - padding)
for img in images:
cv2.rectangle(img, (t_l, t_l), (t_l + length, t_l + length), color, 1)
cv2.rectangle(img, (b_r, t_l), (b_r - length, t_l + length), color, 1)
cv2.rectangle(img, (b_r, b_r), (b_r - length, b_r - length), color, 1)
cv2.rectangle(img, (t_l, b_r), (t_l + length, b_r - length), color, 1)
logger.debug("Overlayed background. Shape: %s", images.shape)
return images
def _compile_masked(self, faces: list[np.ndarray], masks: np.ndarray) -> list[np.ndarray]:
""" Add the mask to the faces for masked preview.
Places an opaque red layer over areas of the face that are masked out.
Parameters
----------
faces: list
The :class:`numpy.ndarray` sample faces and predictions that are to have the mask
applied
masks: :class:`numpy.ndarray`
The masks that are to be applied to the faces
Returns
-------
list
List of :class:`numpy.ndarray` faces with the opaque mask layer applied
"""
orig_masks = 1. - masks
masks3: list[np.ndarray] | np.ndarray = []
if faces[-1].shape[-1] == 4: # Mask contained in alpha channel of predictions
pred_masks = [1. - face[..., -1][..., None] for face in faces[-2:]]
faces[-2:] = [face[..., :-1] for face in faces[-2:]]
masks3 = [orig_masks, *pred_masks]
else:
masks3 = np.repeat(np.expand_dims(orig_masks, axis=0), 3, axis=0)
retval: list[np.ndarray] = []
overlays3 = np.ones_like(faces) * self._mask_color
for previews, overlays, compiled_masks in zip(faces, overlays3, masks3):
compiled_masks *= self._mask_opacity
overlays *= compiled_masks
previews *= (1. - compiled_masks)
retval.append(previews + overlays)
logger.debug("masked shapes: %s", [faces.shape for faces in retval])
return retval
@classmethod
def _overlay_foreground(cls, backgrounds: np.ndarray, foregrounds: np.ndarray) -> np.ndarray:
""" Overlay the preview images into the center of the background images
Parameters
----------
backgrounds: :class:`numpy.ndarray`
Background images for placing the preview images onto
backgrounds: :class:`numpy.ndarray`
Preview images for placing onto the background images
Returns
-------
:class:`numpy.ndarray`
The preview images compiled into the full frame size for each preview
"""
offset = (backgrounds.shape[1] - foregrounds.shape[1]) // 2
for foreground, background in zip(foregrounds, backgrounds):
background[offset:offset + foreground.shape[0],
offset:offset + foreground.shape[1], :3] = foreground
logger.debug("Overlayed foreground. Shape: %s", backgrounds.shape)
return backgrounds
@classmethod
def _get_headers(cls, side: T.Literal["a", "b"], width: int) -> np.ndarray:
""" Set header row for the final preview frame
Parameters
----------
side: {"a" or "b"}
The side that the headers should be generated for
width: int
The width of each column in the preview frame
Returns
-------
:class:`numpy.ndarray`
The column headings for the given side
"""
logger.debug("side: '%s', width: %s",
side, width)
titles = ("Original", "Swap") if side == "a" else ("Swap", "Original")
height = int(width / 4.5)
total_width = width * 3
logger.debug("height: %s, total_width: %s", height, total_width)
font = cv2.FONT_HERSHEY_SIMPLEX
texts = [f"{titles[0]} ({side.upper()})",
f"{titles[0]} > {titles[0]}",
f"{titles[0]} > {titles[1]}"]
scaling = (width / 144) * 0.45
text_sizes = [cv2.getTextSize(texts[idx], font, scaling, 1)[0]
for idx in range(len(texts))]
text_y = int((height + text_sizes[0][1]) / 2)
text_x = [int((width - text_sizes[idx][0]) / 2) + width * idx
for idx in range(len(texts))]
logger.debug("texts: %s, text_sizes: %s, text_x: %s, text_y: %s",
texts, text_sizes, text_x, text_y)
header_box = np.ones((height, total_width, 3), np.float32)
for idx, text in enumerate(texts):
cv2.putText(header_box,
text,
(text_x[idx], text_y),
font,
scaling,
(0, 0, 0),
1,
lineType=cv2.LINE_AA)
logger.debug("header_box.shape: %s", header_box.shape)
return header_box
@classmethod
def _duplicate_headers(cls,
headers: dict[T.Literal["a", "b"], np.ndarray],
columns: int) -> dict[T.Literal["a", "b"], np.ndarray]:
""" Duplicate headers for the number of columns displayed for each side.
Parameters
----------
headers: dict
The headers to be duplicated for each side
columns: int
The number of columns that the header needs to be duplicated for
Returns
-------
:class:dict
The original headers duplicated by the number of columns for each side
"""
for side, header in headers.items():
duped = tuple(header for _ in range(columns))
headers[side] = np.concatenate(duped, axis=1)
logger.debug("side: %s header.shape: %s", side, header.shape)
return headers
class _Timelapse(): # pylint:disable=too-few-public-methods
""" Create a time-lapse preview image.
Parameters
----------
model: plugin from :mod:`plugins.train.model`
The selected model that will be running this trainer
coverage_ratio: float
Ratio of face to be cropped out of the training image.
image_count: int
The number of preview images to be displayed in the time-lapse
mask_opacity: int
The opacity (as a percentage) to use for the mask overlay
mask_color: str
The hex RGB value to use the mask overlay
feeder: :class:`~lib.training.generator.Feeder`
The feeder for generating the time-lapse images.
image_paths: dict
The full paths to the training images for each side of the model
"""
def __init__(self,
model: ModelBase,
coverage_ratio: float,
image_count: int,
mask_opacity: int,
mask_color: str,
feeder: Feeder,
image_paths: dict[T.Literal["a", "b"], list[str]]) -> None:
logger.debug("Initializing %s: model: %s, coverage_ratio: %s, image_count: %s, "
"mask_opacity: %s, mask_color: %s, feeder: %s, image_paths: %s)",
self.__class__.__name__, model, coverage_ratio, image_count, mask_opacity,
mask_color, feeder, len(image_paths))
self._num_images = image_count
self._samples = _Samples(model, coverage_ratio, mask_opacity, mask_color)
self._model = model
self._feeder = feeder
self._image_paths = image_paths
self._output_file = ""
logger.debug("Initialized %s", self.__class__.__name__)
def _setup(self, input_a: str, input_b: str, output: str) -> None:
""" Setup the time-lapse folder locations and the time-lapse feed.
Parameters
----------
input_a: str
The full path to the time-lapse input folder containing faces for the "a" side
input_b: str
The full path to the time-lapse input folder containing faces for the "b" side
output: str, optional
The full path to the time-lapse output folder. If ``None`` is provided this will
default to the model folder
"""
logger.debug("Setting up time-lapse")
if not output:
output = get_folder(os.path.join(str(self._model.io.model_dir),
f"{self._model.name}_timelapse"))
self._output_file = output
logger.debug("Time-lapse output set to '%s'", self._output_file)
# Rewrite paths to pull from the training images so mask and face data can be accessed
images: dict[T.Literal["a", "b"], list[str]] = {}
for side, input_ in zip(T.get_args(T.Literal["a", "b"]), (input_a, input_b)):
training_path = os.path.dirname(self._image_paths[side][0])
images[side] = [os.path.join(training_path, os.path.basename(pth))
for pth in get_image_paths(input_)]
batchsize = min(len(images["a"]),
len(images["b"]),
self._num_images)
self._feeder.set_timelapse_feed(images, batchsize)
logger.debug("Set up time-lapse")
def output_timelapse(self, timelapse_kwargs: dict[T.Literal["input_a",
"input_b",
"output"], str]) -> None:
""" Generate the time-lapse samples and output the created time-lapse to the specified
output folder.
Parameters
----------
timelapse_kwargs: dict:
The keyword arguments for setting up the time-lapse. All values should be full paths
the keys being `input_a`, `input_b`, `output`
"""
logger.debug("Ouputting time-lapse")
if not self._output_file:
self._setup(**T.cast(dict[str, str], timelapse_kwargs))
logger.debug("Getting time-lapse samples")
self._samples.images = self._feeder.generate_preview(is_timelapse=True)
logger.debug("Got time-lapse samples: %s",
{side: len(images) for side, images in self._samples.images.items()})
image = self._samples.show_sample()
if image is None:
return
filename = os.path.join(self._output_file, str(int(time.time())) + ".jpg")
cv2.imwrite(filename, image)
logger.debug("Created time-lapse: '%s'", filename)
def _stack_images(images: np.ndarray) -> np.ndarray:
""" Stack images evenly for preview.
Parameters
----------
images: :class:`numpy.ndarray`
The preview images to be stacked
Returns
-------
:class:`numpy.ndarray`
The stacked preview images
"""
logger.debug("Stack images")
def get_transpose_axes(num):
if num % 2 == 0:
logger.debug("Even number of images to stack")
y_axes = list(range(1, num - 1, 2))
x_axes = list(range(0, num - 1, 2))
else:
logger.debug("Odd number of images to stack")
y_axes = list(range(0, num - 1, 2))
x_axes = list(range(1, num - 1, 2))
return y_axes, x_axes, [num - 1]
images_shape = np.array(images.shape)
new_axes = get_transpose_axes(len(images_shape))
new_shape = [np.prod(images_shape[x]) for x in new_axes]
logger.debug("Stacked images")
return np.transpose(images, axes=np.concatenate(new_axes)).reshape(new_shape)