mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 20:13:52 -04:00
* Update maximum tf version in setup + requirements * - bump max version of tf version in launcher - standardise tf version check * update keras get_custom_objects for tf>2.6 * bugfix: force black text in GUI file dialogs (linux) * dssim loss - Move to stock tf.ssim function * Update optimizer imports for compatibility * fix logging for tf2.8 * Fix GUI graphing for TF2.8 * update tests * bump requirements.txt versions * Remove limit on nvidia-ml-py * Graphing bugfixes - Prevent live graph from displaying if data not yet available * bugfix: Live graph. Collect loss labels correctly * fix: live graph - swallow inconsistent loss errors * Bugfix: Prevent live graph from clearing during training * Fix graphing for AMD
86 lines
3 KiB
Python
86 lines
3 KiB
Python
#!/usr/bin/env python3
|
|
""" Tests for Faceswap Initializers.
|
|
|
|
Adapted from Keras tests.
|
|
"""
|
|
import pytest
|
|
|
|
from keras import optimizers as k_optimizers
|
|
from keras.layers import Dense, Activation
|
|
from keras.models import Sequential
|
|
import numpy as np
|
|
from numpy.testing import assert_allclose
|
|
|
|
from lib.model import optimizers
|
|
from lib.utils import get_backend
|
|
|
|
from tests.utils import generate_test_data, to_categorical
|
|
|
|
|
|
def get_test_data():
|
|
""" Obtain randomized test data for training """
|
|
np.random.seed(1337)
|
|
(x_train, y_train), _ = generate_test_data(num_train=1000,
|
|
num_test=200,
|
|
input_shape=(10,),
|
|
classification=True,
|
|
num_classes=2)
|
|
y_train = to_categorical(y_train)
|
|
return x_train, y_train
|
|
|
|
|
|
def _test_optimizer(optimizer, target=0.75):
|
|
x_train, y_train = get_test_data()
|
|
|
|
model = Sequential()
|
|
model.add(Dense(10, input_shape=(x_train.shape[1],)))
|
|
model.add(Activation("relu"))
|
|
model.add(Dense(y_train.shape[1]))
|
|
model.add(Activation("softmax"))
|
|
model.compile(loss="categorical_crossentropy",
|
|
optimizer=optimizer,
|
|
metrics=["accuracy"])
|
|
|
|
history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
|
|
accuracy = "acc" if get_backend() == "amd" else "accuracy"
|
|
assert history.history[accuracy][-1] >= target
|
|
config = k_optimizers.serialize(optimizer)
|
|
optim = k_optimizers.deserialize(config)
|
|
new_config = k_optimizers.serialize(optim)
|
|
config["class_name"] = config["class_name"].lower()
|
|
new_config["class_name"] = new_config["class_name"].lower()
|
|
assert config == new_config
|
|
|
|
# Test constraints.
|
|
if get_backend() == "amd":
|
|
# NB: PlaidML does not support constraints, so this test skipped for AMD backends
|
|
return
|
|
model = Sequential()
|
|
dense = Dense(10,
|
|
input_shape=(x_train.shape[1],),
|
|
kernel_constraint=lambda x: 0. * x + 1.,
|
|
bias_constraint=lambda x: 0. * x + 2.,)
|
|
model.add(dense)
|
|
model.add(Activation("relu"))
|
|
model.add(Dense(y_train.shape[1]))
|
|
model.add(Activation("softmax"))
|
|
model.compile(loss="categorical_crossentropy",
|
|
optimizer=optimizer,
|
|
metrics=["accuracy"])
|
|
model.train_on_batch(x_train[:10], y_train[:10])
|
|
kernel, bias = dense.get_weights()
|
|
assert_allclose(kernel, 1.)
|
|
assert_allclose(bias, 2.)
|
|
|
|
|
|
@pytest.mark.parametrize("dummy", [None], ids=[get_backend().upper()])
|
|
def test_adam(dummy): # pylint:disable=unused-argument
|
|
""" Test for custom Adam optimizer """
|
|
_test_optimizer(k_optimizers.Adam(), target=0.45)
|
|
_test_optimizer(k_optimizers.Adam(decay=1e-3), target=0.45)
|
|
|
|
|
|
@pytest.mark.parametrize("dummy", [None], ids=[get_backend().upper()])
|
|
def test_adabelief(dummy): # pylint:disable=unused-argument
|
|
""" Test for custom Adam optimizer """
|
|
_test_optimizer(optimizers.AdaBelief(), target=0.45)
|