1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/plugins/extract/detect/_base.py
2019-02-10 18:27:44 +00:00

324 lines
12 KiB
Python

#!/usr/bin/env python3
""" Base class for Face Detector plugins
Plugins should inherit from this class
See the override methods for which methods are
required.
For each source frame, the plugin must pass a dict to finalize containing:
{"filename": <filename of source frame>,
"image": <source image>,
"detected_faces": <list of dlib.rectangles>}
"""
import logging
import os
import traceback
from io import StringIO
from math import sqrt
import cv2
import dlib
from lib.gpu_stats import GPUStats
from lib.utils import rotate_landmarks
from plugins.extract._config import Config
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
def get_config(plugin_name):
""" Return the config for the requested model """
return Config(plugin_name).config_dict
class Detector():
""" Detector object """
def __init__(self, loglevel, rotation=None):
logger.debug("Initializing %s: (rotation: %s)", self.__class__.__name__, rotation)
self.config = get_config(".".join(self.__module__.split(".")[-2:]))
self.loglevel = loglevel
self.cachepath = os.path.join(os.path.dirname(__file__), ".cache")
self.rotation = self.get_rotation_angles(rotation)
self.parent_is_pool = False
self.init = None
# The input and output queues for the plugin.
# See lib.queue_manager.QueueManager for getting queues
self.queues = {"in": None, "out": None}
# Path to model if required
self.model_path = self.set_model_path()
# Target image size for passing images through the detector
# Set to tuple of dimensions (x, y) or int of pixel count
self.target = None
# Approximate VRAM used for the set target. Used to calculate
# how many parallel processes / batches can be run.
# Be conservative to avoid OOM.
self.vram = None
# For detectors that support batching, this should be set to
# the calculated batch size that the amount of available VRAM
# will support. It is also used for holding the number of threads/
# processes for parallel processing plugins
self.batch_size = 1
logger.debug("Initialized _base %s", self.__class__.__name__)
# <<< OVERRIDE METHODS >>> #
# These methods must be overriden when creating a plugin
@staticmethod
def set_model_path():
""" path to data file/models
override for specific detector """
raise NotImplementedError()
def initialize(self, *args, **kwargs):
""" Inititalize the detector
Tasks to be run before any detection is performed.
Override for specific detector """
logger_init = kwargs["log_init"]
log_queue = kwargs["log_queue"]
logger_init(self.loglevel, log_queue)
logger.debug("initialize %s (PID: %s, args: %s, kwargs: %s)",
self.__class__.__name__, os.getpid(), args, kwargs)
self.init = kwargs.get("event", False)
self.queues["in"] = kwargs["in_queue"]
self.queues["out"] = kwargs["out_queue"]
def detect_faces(self, *args, **kwargs):
""" Detect faces in rgb image
Override for specific detector
Must return a list of dlib rects"""
try:
if not self.init:
self.initialize(*args, **kwargs)
except ValueError as err:
logger.error(err)
exit(1)
logger.debug("Detecting Faces (args: %s, kwargs: %s)", args, kwargs)
# <<< DETECTION WRAPPER >>> #
def run(self, *args, **kwargs):
""" Parent detect process.
This should always be called as the entry point so exceptions
are passed back to parent.
Do not override """
try:
self.detect_faces(*args, **kwargs)
except Exception as err: # pylint: disable=broad-except
logger.error("Caught exception in child process: %s: %s", os.getpid(), str(err))
# Display traceback if in initialization stage
if not self.init.is_set():
logger.exception("Traceback:")
tb_buffer = StringIO()
traceback.print_exc(file=tb_buffer)
logger.trace(tb_buffer.getvalue())
exception = {"exception": (os.getpid(), tb_buffer)}
self.queues["out"].put(exception)
exit(1)
# <<< FINALIZE METHODS>>> #
def finalize(self, output):
""" This should be called as the final task of each plugin
Performs fianl processing and puts to the out queue """
if isinstance(output, dict):
logger.trace("Item out: %s", {key: val
for key, val in output.items()
if key != "image"})
else:
logger.trace("Item out: %s", output)
self.queues["out"].put(output)
# <<< DETECTION IMAGE COMPILATION METHODS >>> #
def compile_detection_image(self, image, is_square, scale_up):
""" Compile the detection image """
scale = self.set_scale(image, is_square=is_square, scale_up=scale_up)
return [self.set_detect_image(image, scale), scale]
def set_scale(self, image, is_square=False, scale_up=False):
""" Set the scale factor for incoming image """
height, width = image.shape[:2]
if is_square:
if isinstance(self.target, int):
dims = (self.target ** 0.5, self.target ** 0.5)
self.target = dims
source = max(height, width)
target = max(self.target)
else:
if isinstance(self.target, tuple):
self.target = self.target[0] * self.target[1]
source = width * height
target = self.target
if scale_up or target < source:
scale = sqrt(target / source)
else:
scale = 1.0
logger.trace("Detector scale: %s", scale)
return scale
@staticmethod
def set_detect_image(input_image, scale):
""" Convert the image to RGB and scale """
# pylint: disable=no-member
image = input_image[:, :, ::-1].copy()
if scale == 1.0:
return image
height, width = image.shape[:2]
interpln = cv2.INTER_LINEAR if scale > 1.0 else cv2.INTER_AREA
dims = (int(width * scale), int(height * scale))
if scale < 1.0:
logger.verbose("Resizing image from %sx%s to %s.",
width, height, "x".join(str(i) for i in dims))
image = cv2.resize(image, dims, interpolation=interpln)
return image
# <<< IMAGE ROTATION METHODS >>> #
@staticmethod
def get_rotation_angles(rotation):
""" Set the rotation angles. Includes backwards compatibility for the
'on' and 'off' options:
- 'on' - increment 90 degrees
- 'off' - disable
- 0 is prepended to the list, as whatever happens, we want to
scan the image in it's upright state """
rotation_angles = [0]
if not rotation or rotation.lower() == "off":
logger.debug("Not setting rotation angles")
return rotation_angles
if rotation.lower() == "on":
rotation_angles.extend(range(90, 360, 90))
else:
passed_angles = [int(angle)
for angle in rotation.split(",")]
if len(passed_angles) == 1:
rotation_step_size = passed_angles[0]
rotation_angles.extend(range(rotation_step_size,
360,
rotation_step_size))
elif len(passed_angles) > 1:
rotation_angles.extend(passed_angles)
logger.debug("Rotation Angles: %s", rotation_angles)
return rotation_angles
def rotate_image(self, image, angle):
""" Rotate the image by given angle and return
Image with rotation matrix """
if angle == 0:
return image, None
return self.rotate_image_by_angle(image, angle)
@staticmethod
def rotate_rect(d_rect, rotation_matrix):
""" Rotate a dlib rect based on the rotation_matrix"""
logger.trace("Rotating d_rectangle")
d_rect = rotate_landmarks(d_rect, rotation_matrix)
return d_rect
@staticmethod
def rotate_image_by_angle(image, angle,
rotated_width=None, rotated_height=None):
""" Rotate an image by a given angle.
From: https://stackoverflow.com/questions/22041699 """
logger.trace("Rotating image: (angle: %s, rotated_width: %s, rotated_height: %s)",
angle, rotated_width, rotated_height)
height, width = image.shape[:2]
image_center = (width/2, height/2)
rotation_matrix = cv2.getRotationMatrix2D( # pylint: disable=no-member
image_center, -1.*angle, 1.)
if rotated_width is None or rotated_height is None:
abs_cos = abs(rotation_matrix[0, 0])
abs_sin = abs(rotation_matrix[0, 1])
if rotated_width is None:
rotated_width = int(height*abs_sin + width*abs_cos)
if rotated_height is None:
rotated_height = int(height*abs_cos + width*abs_sin)
rotation_matrix[0, 2] += rotated_width/2 - image_center[0]
rotation_matrix[1, 2] += rotated_height/2 - image_center[1]
logger.trace("Rotated image: (rotation_matrix: %s", rotation_matrix)
return (cv2.warpAffine(image, # pylint: disable=no-member
rotation_matrix,
(rotated_width, rotated_height)),
rotation_matrix)
# << QUEUE METHODS >> #
def get_item(self):
""" Yield one item from the queue """
item = self.queues["in"].get()
if isinstance(item, dict):
logger.trace("Item in: %s", item["filename"])
else:
logger.trace("Item in: %s", item)
if item == "EOF":
logger.debug("In Queue Exhausted")
# Re-put EOF into queue for other threads
self.queues["in"].put(item)
return item
def get_batch(self):
""" Get items from the queue in batches of
self.batch_size
First item in output tuple indicates whether the
queue is exhausted.
Second item is the batch
Remember to put "EOF" to the out queue after processing
the final batch """
exhausted = False
batch = list()
for _ in range(self.batch_size):
item = self.get_item()
if item == "EOF":
exhausted = True
break
batch.append(item)
logger.trace("Returning batch size: %s", len(batch))
return (exhausted, batch)
# <<< DLIB RECTANGLE METHODS >>> #
@staticmethod
def is_mmod_rectangle(d_rectangle):
""" Return whether the passed in object is
a dlib.mmod_rectangle """
return isinstance(
d_rectangle,
dlib.mmod_rectangle) # pylint: disable=c-extension-no-member
def convert_to_dlib_rectangle(self, d_rect):
""" Convert detected mmod_rects to dlib_rectangle """
if self.is_mmod_rectangle(d_rect):
return d_rect.rect
return d_rect
# <<< MISC METHODS >>> #
@staticmethod
def get_vram_free():
""" Return total free VRAM on largest card """
stats = GPUStats()
vram = stats.get_card_most_free()
logger.verbose("Using device %s with %sMB free of %sMB",
vram["device"],
int(vram["free"]),
int(vram["total"]))
return int(vram["free"])
@staticmethod
def set_predetected(width, height):
""" Set a dlib rectangle for predetected faces """
# Predetected_face is used for sort tool.
# Landmarks should not be extracted again from predetected faces,
# because face data is lost, resulting in a large variance
# against extract from original image
logger.debug("Setting predetected face")
return [dlib.rectangle(0, 0, width, height)] # pylint: disable=c-extension-no-member