mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-07 19:05:02 -04:00
* Preparing GAN plugin * Adding multithreading for extract * Adding support for mmod human face detector * Adding face filter argument * Added process number argument to multiprocessing extractor. Fixed progressbar for multiprocessing. * Added tiff as image type. compression artefacts hurt my feelings. * Cleanup
71 lines
2.8 KiB
Python
71 lines
2.8 KiB
Python
import cv2
|
|
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
|
|
from lib.cli import DirectoryProcessor
|
|
from lib.multithreading import pool_process
|
|
from plugins.PluginLoader import PluginLoader
|
|
|
|
class ExtractTrainingData(DirectoryProcessor):
|
|
def create_parser(self, subparser, command, description):
|
|
self.parser = subparser.add_parser(
|
|
command,
|
|
help="Extract the faces from a pictures.",
|
|
description=description,
|
|
epilog="Questions and feedback: \
|
|
https://github.com/deepfakes/faceswap-playground"
|
|
)
|
|
|
|
def add_optional_arguments(self, parser):
|
|
parser.add_argument('-D', '--detector',
|
|
type=str,
|
|
choices=("hog", "cnn"), # case sensitive because this is used to load a plugin.
|
|
default="hog",
|
|
help="Detector to use. 'cnn' detects much more angles but will be much more resource intensive and may fail on large files.")
|
|
|
|
parser.add_argument('-f', '--filter',
|
|
type=str,
|
|
dest="filter",
|
|
default="filter.jpg",
|
|
help="Reference image for the person you want to process. Should be a front portrait"
|
|
)
|
|
|
|
parser.add_argument('-j', '--processes',
|
|
type=int,
|
|
help="Number of processes to use.")
|
|
return parser
|
|
|
|
def process(self):
|
|
extractor_name = "Align" # TODO Pass as argument
|
|
self.extractor = PluginLoader.get_extractor(extractor_name)()
|
|
self.faces_detected = 0
|
|
processes = self.arguments.processes
|
|
if processes != 1:
|
|
files = list(self.read_directory())
|
|
for _ in tqdm(pool_process(self.processFiles, files, processes=processes), total = len(files)):
|
|
self.faces_detected +=1
|
|
else:
|
|
try:
|
|
for filename in tqdm(self.read_directory()):
|
|
self.handleImage(filename)
|
|
|
|
except Exception as e:
|
|
print('Failed to extract from image: {}. Reason: {}'.format(filename, e))
|
|
|
|
def processFiles(self, filename):
|
|
try:
|
|
return self.handleImage(filename)
|
|
except Exception as e:
|
|
print('Failed to extract from image: {}. Reason: {}'.format(filename, e))
|
|
|
|
def handleImage(self, filename):
|
|
count = 0
|
|
image = cv2.imread(filename)
|
|
for idx, face in self.get_faces(image):
|
|
count = idx
|
|
resized_image = self.extractor.extract(image, face, 256)
|
|
output_file = self.output_dir / Path(filename).stem
|
|
cv2.imwrite(str(output_file) + str(idx) + Path(filename).suffix, resized_image)
|
|
return count + 1
|
|
|