1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 19:05:02 -04:00
faceswap/scripts/extract.py
Clorr b3ae6130ed
Misc updates on master before GAN. Added multithreading + mmod face detector (#109)
* Preparing GAN plugin

* Adding multithreading for extract

* Adding support for mmod human face detector

* Adding face filter argument

* Added process number argument to multiprocessing extractor.

Fixed progressbar for multiprocessing.

* Added tiff as image type.
compression artefacts hurt my feelings.

* Cleanup
2018-02-07 13:42:19 +01:00

71 lines
2.8 KiB
Python

import cv2
from pathlib import Path
from tqdm import tqdm
from lib.cli import DirectoryProcessor
from lib.multithreading import pool_process
from plugins.PluginLoader import PluginLoader
class ExtractTrainingData(DirectoryProcessor):
def create_parser(self, subparser, command, description):
self.parser = subparser.add_parser(
command,
help="Extract the faces from a pictures.",
description=description,
epilog="Questions and feedback: \
https://github.com/deepfakes/faceswap-playground"
)
def add_optional_arguments(self, parser):
parser.add_argument('-D', '--detector',
type=str,
choices=("hog", "cnn"), # case sensitive because this is used to load a plugin.
default="hog",
help="Detector to use. 'cnn' detects much more angles but will be much more resource intensive and may fail on large files.")
parser.add_argument('-f', '--filter',
type=str,
dest="filter",
default="filter.jpg",
help="Reference image for the person you want to process. Should be a front portrait"
)
parser.add_argument('-j', '--processes',
type=int,
help="Number of processes to use.")
return parser
def process(self):
extractor_name = "Align" # TODO Pass as argument
self.extractor = PluginLoader.get_extractor(extractor_name)()
self.faces_detected = 0
processes = self.arguments.processes
if processes != 1:
files = list(self.read_directory())
for _ in tqdm(pool_process(self.processFiles, files, processes=processes), total = len(files)):
self.faces_detected +=1
else:
try:
for filename in tqdm(self.read_directory()):
self.handleImage(filename)
except Exception as e:
print('Failed to extract from image: {}. Reason: {}'.format(filename, e))
def processFiles(self, filename):
try:
return self.handleImage(filename)
except Exception as e:
print('Failed to extract from image: {}. Reason: {}'.format(filename, e))
def handleImage(self, filename):
count = 0
image = cv2.imread(filename)
for idx, face in self.get_faces(image):
count = idx
resized_image = self.extractor.extract(image, face, 256)
output_file = self.output_dir / Path(filename).stem
cv2.imwrite(str(output_file) + str(idx) + Path(filename).suffix, resized_image)
return count + 1