mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-09 04:36:50 -04:00
Remove FFMPEG from Conda Requirements Fix Tensorboard logging for Tensorflow 1.13.1 Bump default Conda Tensorflow to 1.13.1 Update max python version to 3.7
718 lines
29 KiB
Python
718 lines
29 KiB
Python
#!/usr/bin python3
|
|
""" The script to run the convert process of faceswap """
|
|
|
|
import logging
|
|
import re
|
|
import os
|
|
import sys
|
|
from time import sleep
|
|
from threading import Event
|
|
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
from scripts.fsmedia import Alignments, Images, PostProcess, Utils
|
|
from lib import Serializer
|
|
from lib.convert import Converter
|
|
from lib.faces_detect import DetectedFace
|
|
from lib.gpu_stats import GPUStats
|
|
from lib.multithreading import MultiThread, PoolProcess, total_cpus
|
|
from lib.queue_manager import queue_manager
|
|
from lib.utils import get_folder, get_image_paths, hash_image_file
|
|
from plugins.extract.pipeline import Extractor
|
|
from plugins.plugin_loader import PluginLoader
|
|
|
|
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
class Convert():
|
|
""" The convert process. """
|
|
def __init__(self, arguments):
|
|
logger.debug("Initializing %s: (args: %s)", self.__class__.__name__, arguments)
|
|
self.args = arguments
|
|
Utils.set_verbosity(self.args.loglevel)
|
|
|
|
self.images = Images(self.args)
|
|
self.validate()
|
|
self.alignments = Alignments(self.args, False, self.images.is_video)
|
|
# Update Legacy alignments
|
|
Legacy(self.alignments, self.images.input_images, arguments.input_aligned_dir)
|
|
self.opts = OptionalActions(self.args, self.images.input_images, self.alignments)
|
|
|
|
self.add_queues()
|
|
self.disk_io = DiskIO(self.alignments, self.images, arguments)
|
|
self.predictor = Predict(self.disk_io.load_queue, self.queue_size, arguments)
|
|
|
|
configfile = self.args.configfile if hasattr(self.args, "configfile") else None
|
|
self.converter = Converter(get_folder(self.args.output_dir),
|
|
self.predictor.output_size,
|
|
self.predictor.has_predicted_mask,
|
|
self.disk_io.draw_transparent,
|
|
self.disk_io.pre_encode,
|
|
arguments,
|
|
configfile=configfile)
|
|
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
@property
|
|
def queue_size(self):
|
|
""" Set q-size to double number of cpus available """
|
|
if self.args.singleprocess:
|
|
retval = 2
|
|
else:
|
|
retval = total_cpus() * 2
|
|
logger.debug(retval)
|
|
return retval
|
|
|
|
@property
|
|
def pool_processes(self):
|
|
""" return the maximum number of pooled processes to use """
|
|
if self.args.singleprocess:
|
|
retval = 1
|
|
else:
|
|
retval = min(total_cpus(), self.images.images_found)
|
|
retval = 1 if retval == 0 else retval
|
|
logger.debug(retval)
|
|
return retval
|
|
|
|
def validate(self):
|
|
""" Make the output folder if it doesn't exist and check that video flag is
|
|
a valid choice """
|
|
if (self.args.writer == "ffmpeg" and
|
|
not self.images.is_video and
|
|
self.args.reference_video is None):
|
|
logger.error("Output as video selected, but using frames as input. You must provide a "
|
|
"reference video ('-ref', '--reference-video').")
|
|
exit(1)
|
|
output_dir = get_folder(self.args.output_dir)
|
|
logger.info("Output Directory: %s", output_dir)
|
|
|
|
def add_queues(self):
|
|
""" Add the queues for convert """
|
|
logger.debug("Adding queues. Queue size: %s", self.queue_size)
|
|
for qname in ("convert_in", "convert_out", "patch"):
|
|
queue_manager.add_queue(qname, self.queue_size)
|
|
|
|
def process(self):
|
|
""" Process the conversion """
|
|
logger.debug("Starting Conversion")
|
|
# queue_manager.debug_monitor(3)
|
|
self.convert_images()
|
|
self.disk_io.save_thread.join()
|
|
queue_manager.terminate_queues()
|
|
|
|
Utils.finalize(self.images.images_found,
|
|
self.predictor.faces_count,
|
|
self.predictor.verify_output)
|
|
logger.debug("Completed Conversion")
|
|
|
|
def convert_images(self):
|
|
""" Convert the images """
|
|
logger.debug("Converting images")
|
|
save_queue = queue_manager.get_queue("convert_out")
|
|
patch_queue = queue_manager.get_queue("patch")
|
|
pool = PoolProcess(self.converter.process, patch_queue, save_queue,
|
|
processes=self.pool_processes)
|
|
pool.start()
|
|
while True:
|
|
self.check_thread_error()
|
|
if self.disk_io.completion_event.is_set():
|
|
break
|
|
sleep(1)
|
|
pool.join()
|
|
|
|
logger.debug("Putting EOF")
|
|
save_queue.put("EOF")
|
|
logger.debug("Converted images")
|
|
|
|
def check_thread_error(self):
|
|
""" Check and raise thread errors """
|
|
for thread in (self.predictor.thread, self.disk_io.load_thread, self.disk_io.save_thread):
|
|
thread.check_and_raise_error()
|
|
|
|
|
|
class DiskIO():
|
|
""" Background threads to:
|
|
Load images from disk and get the detected faces
|
|
Save images back to disk """
|
|
def __init__(self, alignments, images, arguments):
|
|
logger.debug("Initializing %s: (alignments: %s, images: %s, arguments: %s)",
|
|
self.__class__.__name__, alignments, images, arguments)
|
|
self.alignments = alignments
|
|
self.images = images
|
|
self.args = arguments
|
|
self.pre_process = PostProcess(arguments)
|
|
self.completion_event = Event()
|
|
|
|
# For frame skipping
|
|
self.imageidxre = re.compile(r"(\d+)(?!.*\d\.)(?=\.\w+$)")
|
|
self.frame_ranges = self.get_frame_ranges()
|
|
self.writer = self.get_writer()
|
|
|
|
# Extractor for on the fly detection
|
|
self.extractor = self.load_extractor()
|
|
|
|
self.load_queue = None
|
|
self.save_queue = None
|
|
self.load_thread = None
|
|
self.save_thread = None
|
|
self.init_threads()
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
@property
|
|
def draw_transparent(self):
|
|
""" Draw transparent is an image writer only parameter.
|
|
Return the value here for easy access for predictor """
|
|
return self.writer.config.get("draw_transparent", False)
|
|
|
|
@property
|
|
def pre_encode(self):
|
|
""" Return the writer's pre-encoder """
|
|
dummy = np.zeros((20, 20, 3)).astype("uint8")
|
|
test = self.writer.pre_encode(dummy)
|
|
retval = None if test is None else self.writer.pre_encode
|
|
logger.debug("Writer pre_encode function: %s", retval)
|
|
return retval
|
|
|
|
@property
|
|
def total_count(self):
|
|
""" Return the total number of frames to be converted """
|
|
if self.frame_ranges and not self.args.keep_unchanged:
|
|
retval = sum([fr[1] - fr[0] + 1 for fr in self.frame_ranges])
|
|
else:
|
|
retval = self.images.images_found
|
|
logger.debug(retval)
|
|
return retval
|
|
|
|
# Initalization
|
|
def get_writer(self):
|
|
""" Return the writer plugin """
|
|
args = [self.args.output_dir]
|
|
if self.args.writer in ("ffmpeg", "gif"):
|
|
args.append(self.total_count)
|
|
if self.args.writer == "ffmpeg":
|
|
if self.images.is_video:
|
|
args.append(self.args.input_dir)
|
|
else:
|
|
args.append(self.args.reference_video)
|
|
logger.debug("Writer args: %s", args)
|
|
configfile = self.args.configfile if hasattr(self.args, "configfile") else None
|
|
return PluginLoader.get_converter("writer", self.args.writer)(*args, configfile=configfile)
|
|
|
|
def get_frame_ranges(self):
|
|
""" split out the frame ranges and parse out 'min' and 'max' values """
|
|
if not self.args.frame_ranges:
|
|
logger.debug("No frame range set")
|
|
return None
|
|
|
|
minframe, maxframe = None, None
|
|
if self.images.is_video:
|
|
minframe, maxframe = 1, self.images.images_found
|
|
else:
|
|
indices = [int(self.imageidxre.findall(os.path.basename(filename))[0])
|
|
for filename in self.images.input_images]
|
|
if indices:
|
|
minframe, maxframe = min(indices), max(indices)
|
|
logger.debug("minframe: %s, maxframe: %s", minframe, maxframe)
|
|
|
|
if minframe is None or maxframe is None:
|
|
logger.error("Frame Ranges specified, but could not determine frame numbering "
|
|
"from filenames")
|
|
exit(1)
|
|
|
|
retval = list()
|
|
for rng in self.args.frame_ranges:
|
|
if "-" not in rng:
|
|
logger.error("Frame Ranges not specified in the correct format")
|
|
exit(1)
|
|
start, end = rng.split("-")
|
|
retval.append((max(int(start), minframe), min(int(end), maxframe)))
|
|
logger.debug("frame ranges: %s", retval)
|
|
return retval
|
|
|
|
def load_extractor(self):
|
|
""" Set on the fly extraction """
|
|
if self.alignments.have_alignments_file:
|
|
return None
|
|
|
|
logger.debug("Loading extractor")
|
|
logger.warning("No Alignments file found. Extracting on the fly.")
|
|
logger.warning("NB: This will use the inferior cv2-dnn for extraction "
|
|
"and landmarks. It is recommended to perfom Extract first for "
|
|
"superior results")
|
|
extractor = Extractor(detector="cv2-dnn",
|
|
aligner="cv2-dnn",
|
|
loglevel=self.args.loglevel,
|
|
multiprocess=False,
|
|
rotate_images=None,
|
|
min_size=20)
|
|
extractor.launch()
|
|
logger.debug("Loaded extractor")
|
|
return extractor
|
|
|
|
def init_threads(self):
|
|
""" Initialize queues and threads """
|
|
logger.debug("Initializing DiskIO Threads")
|
|
for task in ("load", "save"):
|
|
self.add_queue(task)
|
|
self.start_thread(task)
|
|
logger.debug("Initialized DiskIO Threads")
|
|
|
|
def add_queue(self, task):
|
|
""" Add the queue to queue_manager and set queue attribute """
|
|
logger.debug("Adding queue for task: '%s'", task)
|
|
if task == "load":
|
|
q_name = "convert_in"
|
|
elif task == "save":
|
|
q_name = "convert_out"
|
|
else:
|
|
q_name = task
|
|
setattr(self, "{}_queue".format(task), queue_manager.get_queue(q_name))
|
|
logger.debug("Added queue for task: '%s'", task)
|
|
|
|
def start_thread(self, task):
|
|
""" Start the DiskIO thread """
|
|
logger.debug("Starting thread: '%s'", task)
|
|
args = self.completion_event if task == "save" else None
|
|
func = getattr(self, task)
|
|
io_thread = MultiThread(func, args, thread_count=1)
|
|
io_thread.start()
|
|
setattr(self, "{}_thread".format(task), io_thread)
|
|
logger.debug("Started thread: '%s'", task)
|
|
|
|
# Loading tasks
|
|
def load(self, *args): # pylint: disable=unused-argument
|
|
""" Load the images with detected_faces"""
|
|
logger.debug("Load Images: Start")
|
|
idx = 0
|
|
for filename, image in self.images.load():
|
|
idx += 1
|
|
if self.load_queue.shutdown.is_set():
|
|
logger.debug("Load Queue: Stop signal received. Terminating")
|
|
break
|
|
if image is None or not image.any():
|
|
logger.warning("Unable to open image. Skipping: '%s'", filename)
|
|
continue
|
|
if self.check_skipframe(filename):
|
|
if self.args.keep_unchanged:
|
|
logger.trace("Saving unchanged frame: %s", filename)
|
|
out_file = os.path.join(self.args.output_dir, os.path.basename(filename))
|
|
self.save_queue.put((out_file, image))
|
|
else:
|
|
logger.trace("Discarding frame: '%s'", filename)
|
|
continue
|
|
|
|
detected_faces = self.get_detected_faces(filename, image)
|
|
item = dict(filename=filename, image=image, detected_faces=detected_faces)
|
|
self.pre_process.do_actions(item)
|
|
self.load_queue.put(item)
|
|
|
|
logger.debug("Putting EOF")
|
|
self.load_queue.put("EOF")
|
|
logger.debug("Load Images: Complete")
|
|
|
|
def check_skipframe(self, filename):
|
|
""" Check whether frame is to be skipped """
|
|
if not self.frame_ranges:
|
|
return None
|
|
indices = self.imageidxre.findall(filename)
|
|
if not indices:
|
|
logger.warning("Could not determine frame number. Frame will be converted: '%s'",
|
|
filename)
|
|
return False
|
|
idx = int(indices[0]) if indices else None
|
|
skipframe = not any(map(lambda b: b[0] <= idx <= b[1], self.frame_ranges))
|
|
return skipframe
|
|
|
|
def get_detected_faces(self, filename, image):
|
|
""" Return detected faces from alignments or detector """
|
|
logger.trace("Getting faces for: '%s'", filename)
|
|
if not self.extractor:
|
|
detected_faces = self.alignments_faces(os.path.basename(filename), image)
|
|
else:
|
|
detected_faces = self.detect_faces(filename, image)
|
|
logger.trace("Got %s faces for: '%s'", len(detected_faces), filename)
|
|
return detected_faces
|
|
|
|
def alignments_faces(self, frame, image):
|
|
""" Get the face from alignments file """
|
|
if not self.check_alignments(frame):
|
|
return list()
|
|
|
|
faces = self.alignments.get_faces_in_frame(frame)
|
|
detected_faces = list()
|
|
|
|
for rawface in faces:
|
|
face = DetectedFace()
|
|
face.from_alignment(rawface, image=image)
|
|
detected_faces.append(face)
|
|
return detected_faces
|
|
|
|
def check_alignments(self, frame):
|
|
""" If we have no alignments for this image, skip it """
|
|
have_alignments = self.alignments.frame_exists(frame)
|
|
if not have_alignments:
|
|
tqdm.write("No alignment found for {}, "
|
|
"skipping".format(frame))
|
|
return have_alignments
|
|
|
|
def detect_faces(self, filename, image):
|
|
""" Extract the face from a frame (If alignments file not found) """
|
|
inp = {"filename": filename,
|
|
"image": image}
|
|
self.extractor.input_queue.put(inp)
|
|
faces = next(self.extractor.detected_faces())
|
|
|
|
landmarks = faces["landmarks"]
|
|
detected_faces = faces["detected_faces"]
|
|
final_faces = list()
|
|
|
|
for idx, face in enumerate(detected_faces):
|
|
detected_face = DetectedFace()
|
|
detected_face.from_bounding_box(face)
|
|
detected_face.landmarksXY = landmarks[idx]
|
|
final_faces.append(detected_face)
|
|
return final_faces
|
|
|
|
# Saving tasks
|
|
def save(self, completion_event):
|
|
""" Save the converted images """
|
|
logger.debug("Save Images: Start")
|
|
for _ in tqdm(range(self.total_count), desc="Converting", file=sys.stdout):
|
|
if self.save_queue.shutdown.is_set():
|
|
logger.debug("Save Queue: Stop signal received. Terminating")
|
|
break
|
|
item = self.save_queue.get()
|
|
if item == "EOF":
|
|
logger.debug("EOF Received")
|
|
break
|
|
filename, image = item
|
|
self.writer.write(filename, image)
|
|
self.writer.close()
|
|
completion_event.set()
|
|
logger.debug("Save Faces: Complete")
|
|
|
|
|
|
class Predict():
|
|
""" Predict faces from incoming queue """
|
|
def __init__(self, in_queue, queue_size, arguments):
|
|
logger.debug("Initializing %s: (args: %s, queue_size: %s, in_queue: %s)",
|
|
self.__class__.__name__, arguments, queue_size, in_queue)
|
|
self.batchsize = self.get_batchsize(queue_size)
|
|
self.args = arguments
|
|
self.in_queue = in_queue
|
|
self.out_queue = queue_manager.get_queue("patch")
|
|
self.serializer = Serializer.get_serializer("json")
|
|
self.faces_count = 0
|
|
self.verify_output = False
|
|
self.model = self.load_model()
|
|
self.predictor = self.model.converter(self.args.swap_model)
|
|
self.queues = dict()
|
|
|
|
self.thread = MultiThread(self.predict_faces, thread_count=1)
|
|
self.thread.start()
|
|
logger.debug("Initialized %s: (out_queue: %s)", self.__class__.__name__, self.out_queue)
|
|
|
|
@property
|
|
def coverage_ratio(self):
|
|
""" Return coverage ratio from training options """
|
|
return self.model.training_opts["coverage_ratio"]
|
|
|
|
@property
|
|
def input_size(self):
|
|
""" Return the model input size """
|
|
return self.model.input_shape[0]
|
|
|
|
@property
|
|
def output_size(self):
|
|
""" Return the model output size """
|
|
return self.model.output_shape[0]
|
|
|
|
@property
|
|
def input_mask(self):
|
|
""" Return the input mask """
|
|
mask = np.zeros(self.model.state.mask_shapes[0], dtype="float32")
|
|
retval = np.expand_dims(mask, 0)
|
|
return retval
|
|
|
|
@property
|
|
def has_predicted_mask(self):
|
|
""" Return whether this model has a predicted mask """
|
|
return bool(self.model.state.mask_shapes)
|
|
|
|
@staticmethod
|
|
def get_batchsize(queue_size):
|
|
""" Get the batchsize """
|
|
logger.debug("Getting batchsize")
|
|
is_cpu = GPUStats().device_count == 0
|
|
batchsize = 1 if is_cpu else 16
|
|
batchsize = min(queue_size, batchsize)
|
|
logger.debug("Batchsize: %s", batchsize)
|
|
logger.debug("Got batchsize: %s", batchsize)
|
|
return batchsize
|
|
|
|
def load_model(self):
|
|
""" Load the model requested for conversion """
|
|
logger.debug("Loading Model")
|
|
model_dir = get_folder(self.args.model_dir, make_folder=False)
|
|
if not model_dir:
|
|
logger.error("%s does not exist.", self.args.model_dir)
|
|
exit(1)
|
|
trainer = self.get_trainer(model_dir)
|
|
gpus = 1 if not hasattr(self.args, "gpus") else self.args.gpus
|
|
model = PluginLoader.get_model(trainer)(model_dir, gpus, predict=True)
|
|
logger.debug("Loaded Model")
|
|
return model
|
|
|
|
def get_trainer(self, model_dir):
|
|
""" Return the trainer name if provided, or read from state file """
|
|
if hasattr(self.args, "trainer") and self.args.trainer:
|
|
logger.debug("Trainer name provided: '%s'", self.args.trainer)
|
|
return self.args.trainer
|
|
|
|
statefile = [fname for fname in os.listdir(str(model_dir))
|
|
if fname.endswith("_state.json")]
|
|
if len(statefile) != 1:
|
|
logger.error("There should be 1 state file in your model folder. %s were found. "
|
|
"Specify a trainer with the '-t', '--trainer' option.", len(statefile))
|
|
exit(1)
|
|
statefile = os.path.join(str(model_dir), statefile[0])
|
|
|
|
with open(statefile, "rb") as inp:
|
|
state = self.serializer.unmarshal(inp.read().decode("utf-8"))
|
|
trainer = state.get("name", None)
|
|
|
|
if not trainer:
|
|
logger.error("Trainer name could not be read from state file. "
|
|
"Specify a trainer with the '-t', '--trainer' option.")
|
|
exit(1)
|
|
logger.debug("Trainer from state file: '%s'", trainer)
|
|
return trainer
|
|
|
|
def predict_faces(self):
|
|
""" Get detected faces from images """
|
|
faces_seen = 0
|
|
consecutive_no_faces = 0
|
|
batch = list()
|
|
while True:
|
|
item = self.in_queue.get()
|
|
if item != "EOF":
|
|
logger.trace("Got from queue: '%s'", item["filename"])
|
|
faces_count = len(item["detected_faces"])
|
|
|
|
# Safety measure. If a large stream of frames appear that do not have faces,
|
|
# these will stack up into RAM. Keep a count of consecutive frames with no faces.
|
|
# If self.batchsize number of frames appear, force the current batch through
|
|
# to clear RAM.
|
|
consecutive_no_faces = consecutive_no_faces + 1 if faces_count == 0 else 0
|
|
self.faces_count += faces_count
|
|
if faces_count > 1:
|
|
self.verify_output = True
|
|
logger.verbose("Found more than one face in an image! '%s'",
|
|
os.path.basename(item["filename"]))
|
|
|
|
self.load_aligned(item)
|
|
|
|
faces_seen += faces_count
|
|
batch.append(item)
|
|
|
|
if item != "EOF" and (faces_seen < self.batchsize and
|
|
consecutive_no_faces < self.batchsize):
|
|
logger.trace("Continuing. Current batchsize: %s, consecutive_no_faces: %s",
|
|
faces_seen, consecutive_no_faces)
|
|
continue
|
|
|
|
if batch:
|
|
logger.trace("Batching to predictor. Frames: %s, Faces: %s",
|
|
len(batch), faces_seen)
|
|
detected_batch = [detected_face for item in batch
|
|
for detected_face in item["detected_faces"]]
|
|
if faces_seen != 0:
|
|
feed_faces = self.compile_feed_faces(detected_batch)
|
|
predicted = self.predict(feed_faces)
|
|
else:
|
|
predicted = list()
|
|
|
|
self.queue_out_frames(batch, predicted)
|
|
|
|
consecutive_no_faces = 0
|
|
faces_seen = 0
|
|
batch = list()
|
|
if item == "EOF":
|
|
logger.debug("EOF Received")
|
|
break
|
|
logger.debug("Putting EOF")
|
|
self.out_queue.put("EOF")
|
|
logger.debug("Load queue complete")
|
|
|
|
def load_aligned(self, item):
|
|
""" Load the feed faces and reference output faces """
|
|
logger.trace("Loading aligned faces: '%s'", item["filename"])
|
|
for detected_face in item["detected_faces"]:
|
|
detected_face.load_feed_face(item["image"],
|
|
size=self.input_size,
|
|
coverage_ratio=self.coverage_ratio,
|
|
dtype="float32")
|
|
if self.input_size == self.output_size:
|
|
detected_face.reference = detected_face.feed
|
|
else:
|
|
detected_face.load_reference_face(item["image"],
|
|
size=self.output_size,
|
|
coverage_ratio=self.coverage_ratio,
|
|
dtype="float32")
|
|
logger.trace("Loaded aligned faces: '%s'", item["filename"])
|
|
|
|
@staticmethod
|
|
def compile_feed_faces(detected_faces):
|
|
""" Compile the faces for feeding into the predictor """
|
|
logger.trace("Compiling feed face. Batchsize: %s", len(detected_faces))
|
|
feed_faces = np.stack([detected_face.feed_face for detected_face in detected_faces])
|
|
logger.trace("Compiled Feed faces. Shape: %s", feed_faces.shape)
|
|
return feed_faces
|
|
|
|
def predict(self, feed_faces):
|
|
""" Perform inference on the feed """
|
|
logger.trace("Predicting: Batchsize: %s", len(feed_faces))
|
|
feed = [feed_faces]
|
|
if self.has_predicted_mask:
|
|
feed.append(np.repeat(self.input_mask, feed_faces.shape[0], axis=0))
|
|
logger.trace("Input shape(s): %s", [item.shape for item in feed])
|
|
|
|
predicted = self.predictor(feed)
|
|
predicted = predicted if isinstance(predicted, list) else [predicted]
|
|
logger.trace("Output shape(s): %s", [predict.shape for predict in predicted])
|
|
|
|
# Compile masks into alpha channel or keep raw faces
|
|
predicted = np.concatenate(predicted, axis=-1) if len(predicted) == 2 else predicted[0]
|
|
predicted = predicted.astype("float32")
|
|
|
|
logger.trace("Final shape: %s", predicted.shape)
|
|
return predicted
|
|
|
|
def queue_out_frames(self, batch, swapped_faces):
|
|
""" Compile the batch back to original frames and put to out_queue """
|
|
logger.trace("Queueing out batch. Batchsize: %s", len(batch))
|
|
pointer = 0
|
|
for item in batch:
|
|
num_faces = len(item["detected_faces"])
|
|
if num_faces == 0:
|
|
item["swapped_faces"] = np.array(list())
|
|
else:
|
|
item["swapped_faces"] = swapped_faces[pointer:pointer + num_faces]
|
|
|
|
logger.trace("Putting to queue. ('%s', detected_faces: %s, swapped_faces: %s)",
|
|
item["filename"], len(item["detected_faces"]),
|
|
item["swapped_faces"].shape[0])
|
|
self.out_queue.put(item)
|
|
pointer += num_faces
|
|
logger.trace("Queued out batch. Batchsize: %s", len(batch))
|
|
|
|
|
|
class OptionalActions():
|
|
""" Process the optional actions for convert """
|
|
|
|
def __init__(self, args, input_images, alignments):
|
|
logger.debug("Initializing %s", self.__class__.__name__)
|
|
self.args = args
|
|
self.input_images = input_images
|
|
self.alignments = alignments
|
|
|
|
self.remove_skipped_faces()
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
# SKIP FACES #
|
|
def remove_skipped_faces(self):
|
|
""" Remove deleted faces from the loaded alignments """
|
|
logger.debug("Filtering Faces")
|
|
face_hashes = self.get_face_hashes()
|
|
if not face_hashes:
|
|
logger.debug("No face hashes. Not skipping any faces")
|
|
return
|
|
pre_face_count = self.alignments.faces_count
|
|
self.alignments.filter_hashes(face_hashes, filter_out=False)
|
|
logger.info("Faces filtered out: %s", pre_face_count - self.alignments.faces_count)
|
|
|
|
def get_face_hashes(self):
|
|
""" Check for the existence of an aligned directory for identifying
|
|
which faces in the target frames should be swapped.
|
|
If it exists, obtain the hashes of the faces in the folder """
|
|
face_hashes = list()
|
|
input_aligned_dir = self.args.input_aligned_dir
|
|
|
|
if input_aligned_dir is None:
|
|
logger.verbose("Aligned directory not specified. All faces listed in the "
|
|
"alignments file will be converted")
|
|
elif not os.path.isdir(input_aligned_dir):
|
|
logger.warning("Aligned directory not found. All faces listed in the "
|
|
"alignments file will be converted")
|
|
else:
|
|
file_list = [path for path in get_image_paths(input_aligned_dir)]
|
|
logger.info("Getting Face Hashes for selected Aligned Images")
|
|
for face in tqdm(file_list, desc="Hashing Faces"):
|
|
face_hashes.append(hash_image_file(face))
|
|
logger.debug("Face Hashes: %s", (len(face_hashes)))
|
|
if not face_hashes:
|
|
logger.error("Aligned directory is empty, no faces will be converted!")
|
|
exit(1)
|
|
elif len(face_hashes) <= len(self.input_images) / 3:
|
|
logger.warning("Aligned directory contains far fewer images than the input "
|
|
"directory, are you sure this is the right folder?")
|
|
return face_hashes
|
|
|
|
|
|
class Legacy():
|
|
""" Update legacy alignments:
|
|
- Rotate landmarks and bounding boxes on legacy alignments
|
|
and remove the 'r' parameter
|
|
- Add face hashes to alignments file
|
|
"""
|
|
def __init__(self, alignments, frames, faces_dir):
|
|
self.alignments = alignments
|
|
self.frames = {os.path.basename(frame): frame
|
|
for frame in frames}
|
|
self.process(faces_dir)
|
|
|
|
def process(self, faces_dir):
|
|
""" Run the rotate alignments process """
|
|
rotated = self.alignments.get_legacy_rotation()
|
|
hashes = self.alignments.get_legacy_no_hashes()
|
|
if not rotated and not hashes:
|
|
return
|
|
if rotated:
|
|
logger.info("Legacy rotated frames found. Converting...")
|
|
self.rotate_landmarks(rotated)
|
|
self.alignments.save()
|
|
if hashes and faces_dir:
|
|
logger.info("Legacy alignments found. Adding Face Hashes...")
|
|
self.add_hashes(hashes, faces_dir)
|
|
self.alignments.save()
|
|
|
|
def rotate_landmarks(self, rotated):
|
|
""" Rotate the landmarks """
|
|
for rotate_item in tqdm(rotated, desc="Rotating Landmarks"):
|
|
frame = self.frames.get(rotate_item, None)
|
|
if frame is None:
|
|
logger.debug("Skipping missing frame: '%s'", rotate_item)
|
|
continue
|
|
self.alignments.rotate_existing_landmarks(rotate_item, frame)
|
|
|
|
def add_hashes(self, hashes, faces_dir):
|
|
""" Add Face Hashes to the alignments file """
|
|
all_faces = dict()
|
|
face_files = sorted(face for face in os.listdir(faces_dir) if "_" in face)
|
|
for face in face_files:
|
|
filename, extension = os.path.splitext(face)
|
|
index = filename[filename.rfind("_") + 1:]
|
|
if not index.isdigit():
|
|
continue
|
|
orig_frame = filename[:filename.rfind("_")] + extension
|
|
all_faces.setdefault(orig_frame, dict())[int(index)] = os.path.join(faces_dir, face)
|
|
|
|
for frame in tqdm(hashes):
|
|
if frame not in all_faces.keys():
|
|
logger.warning("Skipping missing frame: '%s'", frame)
|
|
continue
|
|
hash_faces = all_faces[frame]
|
|
for index, face_path in hash_faces.items():
|
|
hash_faces[index] = hash_image_file(face_path)
|
|
self.alignments.add_face_hashes(frame, hash_faces)
|