1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 19:05:02 -04:00
faceswap/scripts/extract.py

442 lines
17 KiB
Python

#!/usr/bin python3
""" The script to run the extract process of faceswap """
import logging
import os
import sys
from pathlib import Path
from tqdm import tqdm
from lib.faces_detect import DetectedFace
from lib.gpu_stats import GPUStats
from lib.multithreading import MultiThread, PoolProcess, SpawnProcess
from lib.queue_manager import queue_manager, QueueEmpty
from lib.utils import get_folder, hash_encode_image
from plugins.plugin_loader import PluginLoader
from scripts.fsmedia import Alignments, Images, PostProcess, Utils
tqdm.monitor_interval = 0 # workaround for TqdmSynchronisationWarning
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class Extract():
""" The extract process. """
def __init__(self, arguments):
logger.debug("Initializing %s: (args: %s", self.__class__.__name__, arguments)
self.args = arguments
self.output_dir = get_folder(self.args.output_dir)
logger.info("Output Directory: %s", self.args.output_dir)
self.images = Images(self.args)
self.alignments = Alignments(self.args, True, self.images.is_video)
self.plugins = Plugins(self.args)
self.post_process = PostProcess(arguments)
self.verify_output = False
self.save_interval = None
if hasattr(self.args, "save_interval"):
self.save_interval = self.args.save_interval
logger.debug("Initialized %s", self.__class__.__name__)
@property
def skip_num(self):
""" Number of frames to skip if extract_every_n is passed """
return self.args.extract_every_n if hasattr(self.args, "extract_every_n") else 1
def process(self):
""" Perform the extraction process """
logger.info('Starting, this may take a while...')
Utils.set_verbosity(self.args.loglevel)
# queue_manager.debug_monitor(1)
self.threaded_io("load")
save_thread = self.threaded_io("save")
self.run_extraction()
save_thread.join()
self.alignments.save()
Utils.finalize(self.images.images_found // self.skip_num,
self.alignments.faces_count,
self.verify_output)
def threaded_io(self, task, io_args=None):
""" Perform I/O task in a background thread """
logger.debug("Threading task: (Task: '%s')", task)
io_args = tuple() if io_args is None else (io_args, )
if task == "load":
func = self.load_images
elif task == "save":
func = self.save_faces
elif task == "reload":
func = self.reload_images
io_thread = MultiThread(func, *io_args, thread_count=1)
io_thread.start()
return io_thread
def load_images(self):
""" Load the images """
logger.debug("Load Images: Start")
load_queue = queue_manager.get_queue("extract_in")
idx = 0
for filename, image in self.images.load():
idx += 1
if load_queue.shutdown.is_set():
logger.debug("Load Queue: Stop signal received. Terminating")
break
if idx % self.skip_num != 0:
logger.trace("Skipping image '%s' due to extract_every_n = %s",
filename, self.skip_num)
continue
if image is None or not image.any():
logger.warning("Unable to open image. Skipping: '%s'", filename)
continue
imagename = os.path.basename(filename)
if imagename in self.alignments.data.keys():
logger.trace("Skipping image: '%s'", filename)
continue
item = {"filename": filename,
"image": image}
load_queue.put(item)
load_queue.put("EOF")
logger.debug("Load Images: Complete")
def reload_images(self, detected_faces):
""" Reload the images and pair to detected face """
logger.debug("Reload Images: Start. Detected Faces Count: %s", len(detected_faces))
load_queue = queue_manager.get_queue("detect")
for filename, image in self.images.load():
if load_queue.shutdown.is_set():
logger.debug("Reload Queue: Stop signal received. Terminating")
break
logger.trace("Reloading image: '%s'", filename)
detect_item = detected_faces.pop(filename, None)
if not detect_item:
logger.warning("Couldn't find faces for: %s", filename)
continue
detect_item["image"] = image
load_queue.put(detect_item)
load_queue.put("EOF")
logger.debug("Reload Images: Complete")
@staticmethod
def save_faces():
""" Save the generated faces """
logger.debug("Save Faces: Start")
save_queue = queue_manager.get_queue("extract_out")
while True:
if save_queue.shutdown.is_set():
logger.debug("Save Queue: Stop signal received. Terminating")
break
item = save_queue.get()
if item == "EOF":
break
filename, face = item
logger.trace("Saving face: '%s'", filename)
try:
with open(filename, "wb") as out_file:
out_file.write(face)
except Exception as err: # pylint: disable=broad-except
logger.error("Failed to save image '%s'. Original Error: %s", filename, err)
continue
logger.debug("Save Faces: Complete")
def run_extraction(self):
""" Run Face Detection """
save_queue = queue_manager.get_queue("extract_out")
to_process = self.process_item_count()
frame_no = 0
size = self.args.size if hasattr(self.args, "size") else 256
align_eyes = self.args.align_eyes if hasattr(self.args, "align_eyes") else False
if self.plugins.is_parallel:
logger.debug("Using parallel processing")
self.plugins.launch_aligner()
self.plugins.launch_detector()
if not self.plugins.is_parallel:
logger.debug("Using serial processing")
self.run_detection(to_process)
self.plugins.launch_aligner()
for faces in tqdm(self.plugins.detect_faces(extract_pass="align"),
total=to_process,
file=sys.stdout,
desc="Extracting faces"):
filename = faces["filename"]
self.align_face(faces, align_eyes, size, filename)
self.post_process.do_actions(faces)
faces_count = len(faces["detected_faces"])
if faces_count == 0:
logger.verbose("No faces were detected in image: %s",
os.path.basename(filename))
if not self.verify_output and faces_count > 1:
self.verify_output = True
self.output_faces(filename, faces, save_queue)
frame_no += 1
if frame_no == self.save_interval:
self.alignments.save()
frame_no = 0
save_queue.put("EOF")
def process_item_count(self):
""" Return the number of items to be processedd """
processed = sum(os.path.basename(frame) in self.alignments.data.keys()
for frame in self.images.input_images)
logger.debug("Items already processed: %s", processed)
if processed != 0 and self.args.skip_existing:
logger.info("Skipping previously extracted frames: %s", processed)
if processed != 0 and self.args.skip_faces:
logger.info("Skipping frames with detected faces: %s", processed)
to_process = (self.images.images_found - processed) // self.skip_num
logger.debug("Items to be Processed: %s", to_process)
if to_process == 0:
logger.error("No frames to process. Exiting")
queue_manager.terminate_queues()
exit(0)
return to_process
def run_detection(self, to_process):
""" Run detection only """
self.plugins.launch_detector()
detected_faces = dict()
for detected in tqdm(self.plugins.detect_faces(extract_pass="detect"),
total=to_process,
file=sys.stdout,
desc="Detecting faces"):
exception = detected.get("exception", False)
if exception:
break
del detected["image"]
filename = detected["filename"]
detected_faces[filename] = detected
self.threaded_io("reload", detected_faces)
def align_face(self, faces, align_eyes, size, filename):
""" Align the detected face and add the destination file path """
final_faces = list()
image = faces["image"]
landmarks = faces["landmarks"]
detected_faces = faces["detected_faces"]
for idx, face in enumerate(detected_faces):
detected_face = DetectedFace()
detected_face.from_bounding_box(face, image)
detected_face.landmarksXY = landmarks[idx]
detected_face.load_aligned(image, size=size, align_eyes=align_eyes)
final_faces.append({"file_location": self.output_dir / Path(filename).stem,
"face": detected_face})
faces["detected_faces"] = final_faces
def output_faces(self, filename, faces, save_queue):
""" Output faces to save thread """
final_faces = list()
for idx, detected_face in enumerate(faces["detected_faces"]):
output_file = detected_face["file_location"]
extension = Path(filename).suffix
out_filename = "{}_{}{}".format(str(output_file), str(idx), extension)
face = detected_face["face"]
resized_face = face.aligned_face
face.hash, img = hash_encode_image(resized_face, extension)
save_queue.put((out_filename, img))
final_faces.append(face.to_alignment())
self.alignments.data[os.path.basename(filename)] = final_faces
class Plugins():
""" Detector and Aligner Plugins and queues """
def __init__(self, arguments, converter_args=None):
logger.debug("Initializing %s: (converter_args: %s)",
self.__class__.__name__, converter_args)
self.args = arguments
self.converter_args = converter_args # Arguments from converter for on the fly extract
if converter_args is not None:
self.loglevel = converter_args["loglevel"]
else:
self.loglevel = self.args.loglevel
self.detector = self.load_detector()
self.aligner = self.load_aligner()
self.is_parallel = self.set_parallel_processing()
self.process_detect = None
self.process_align = None
self.add_queues()
logger.debug("Initialized %s", self.__class__.__name__)
def set_parallel_processing(self):
""" Set whether to run detect and align together or separately """
detector_vram = self.detector.vram
aligner_vram = self.aligner.vram
gpu_stats = GPUStats()
if (detector_vram == 0
or aligner_vram == 0
or gpu_stats.device_count == 0):
logger.debug("At least one of aligner or detector have no VRAM requirement. "
"Enabling parallel processing.")
return True
if hasattr(self.args, "multiprocess") and not self.args.multiprocess:
logger.info("NB: Parallel processing disabled.You may get faster "
"extraction speeds by enabling it with the -mp switch")
return False
required_vram = detector_vram + aligner_vram + 320 # 320MB buffer
stats = gpu_stats.get_card_most_free()
free_vram = int(stats["free"])
logger.verbose("%s - %sMB free of %sMB",
stats["device"],
free_vram,
int(stats["total"]))
if free_vram <= required_vram:
logger.warning("Not enough free VRAM for parallel processing. "
"Switching to serial")
return False
return True
def add_queues(self):
""" Add the required processing queues to Queue Manager """
for task in ("load", "detect", "align", "save"):
size = 0
if task == "load" or (not self.is_parallel and task == "detect"):
size = 100
if task == "load":
q_name = "extract_in"
elif task == "save":
q_name = "extract_out"
else:
q_name = task
queue_manager.add_queue(q_name, maxsize=size)
def load_detector(self):
""" Set global arguments and load detector plugin """
if not self.converter_args:
detector_name = self.args.detector.replace("-", "_").lower()
else:
detector_name = self.converter_args["detector"]
logger.debug("Loading Detector: '%s'", detector_name)
# Rotation
rotation = self.args.rotate_images if hasattr(self.args, "rotate_images") else None
# Min acceptable face size:
min_size = self.args.min_size if hasattr(self.args, "min_size") else 0
detector = PluginLoader.get_detector(detector_name)(
loglevel=self.loglevel,
rotation=rotation,
min_size=min_size)
return detector
def load_aligner(self):
""" Set global arguments and load aligner plugin """
if not self.converter_args:
aligner_name = self.args.aligner.replace("-", "_").lower()
else:
aligner_name = self.converter_args["aligner"]
logger.debug("Loading Aligner: '%s'", aligner_name)
aligner = PluginLoader.get_aligner(aligner_name)(
loglevel=self.loglevel)
return aligner
def launch_aligner(self):
""" Launch the face aligner """
logger.debug("Launching Aligner")
out_queue = queue_manager.get_queue("align")
kwargs = {"in_queue": queue_manager.get_queue("detect"),
"out_queue": out_queue}
self.process_align = SpawnProcess(self.aligner.run, **kwargs)
event = self.process_align.event
error = self.process_align.error
self.process_align.start()
# Wait for Aligner to take it's VRAM
# The first ever load of the model for FAN has reportedly taken
# up to 3-4 minutes, hence high timeout.
# TODO investigate why this is and fix if possible
for mins in reversed(range(5)):
for seconds in range(60):
event.wait(seconds)
if event.is_set():
break
if error.is_set():
break
if event.is_set():
break
if mins == 0 or error.is_set():
raise ValueError("Error initializing Aligner")
logger.info("Waiting for Aligner... Time out in %s minutes", mins)
logger.debug("Launched Aligner")
def launch_detector(self):
""" Launch the face detector """
logger.debug("Launching Detector")
out_queue = queue_manager.get_queue("detect")
kwargs = {"in_queue": queue_manager.get_queue("extract_in"),
"out_queue": out_queue}
if self.converter_args:
kwargs["processes"] = 1
mp_func = PoolProcess if self.detector.parent_is_pool else SpawnProcess
self.process_detect = mp_func(self.detector.run, **kwargs)
event = self.process_detect.event if hasattr(self.process_detect, "event") else None
error = self.process_detect.error if hasattr(self.process_detect, "error") else None
self.process_detect.start()
if event is None:
logger.debug("Launched Detector")
return
for mins in reversed(range(5)):
for seconds in range(60):
event.wait(seconds)
if event.is_set():
break
if error and error.is_set():
break
if event.is_set():
break
if mins == 0 or (error and error.is_set()):
raise ValueError("Error initializing Detector")
logger.info("Waiting for Detector... Time out in %s minutes", mins)
logger.debug("Launched Detector")
def detect_faces(self, extract_pass="detect"):
""" Detect faces from in an image """
logger.debug("Running Detection. Pass: '%s'", extract_pass)
if self.is_parallel or extract_pass == "align":
out_queue = queue_manager.get_queue("align")
if not self.is_parallel and extract_pass == "detect":
out_queue = queue_manager.get_queue("detect")
while True:
try:
faces = out_queue.get(True, 1)
if faces == "EOF":
break
if isinstance(faces, dict) and faces.get("exception"):
pid = faces["exception"][0]
t_back = faces["exception"][1].getvalue()
err = "Error in child process {}. {}".format(pid, t_back)
raise Exception(err)
except QueueEmpty:
continue
yield faces
logger.debug("Detection Complete")