1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-08 03:26:47 -04:00
faceswap/tests/lib/model/layers_test.py
torzdf aa39234538
Update all Keras Imports to be conditional (#1214)
* Remove custom keras importer

* first round keras imports fix

* launcher.py: Remove KerasFinder references

* 2nd round keras imports update (lib and extract)

* 3rd round keras imports update (train)

* remove KerasFinder from tests

* 4th round keras imports update (tests)
2022-05-03 20:18:39 +01:00

142 lines
5 KiB
Python

#!/usr/bin/env python3
""" Tests for Faceswap Custom Layers.
Adapted from Keras tests.
"""
import pytest
import numpy as np
from numpy.testing import assert_allclose
from lib.model import layers
from lib.utils import get_backend
from tests.utils import has_arg
if get_backend() == "amd":
from keras import Input, Model, backend as K
else:
# Ignore linting errors from Tensorflow's thoroughly broken import system
from tensorflow.keras import Input, Model, backend as K # pylint:disable=import-error
CONV_SHAPE = (3, 3, 256, 2048)
CONV_ID = get_backend().upper()
def layer_test(layer_cls, kwargs={}, input_shape=None, input_dtype=None,
input_data=None, expected_output=None,
expected_output_dtype=None, fixed_batch_size=False):
"""Test routine for a layer with a single input tensor
and single output tensor.
"""
# generate input data
if input_data is None:
assert input_shape
if not input_dtype:
input_dtype = K.floatx()
input_data_shape = list(input_shape)
for i, var_e in enumerate(input_data_shape):
if var_e is None:
input_data_shape[i] = np.random.randint(1, 4)
input_data = (10 * np.random.random(input_data_shape))
input_data = input_data.astype(input_dtype)
else:
if input_shape is None:
input_shape = input_data.shape
if input_dtype is None:
input_dtype = input_data.dtype
if expected_output_dtype is None:
expected_output_dtype = input_dtype
# instantiation
layer = layer_cls(**kwargs)
# test get_weights , set_weights at layer level
weights = layer.get_weights()
layer.set_weights(weights)
layer.build(input_shape)
expected_output_shape = layer.compute_output_shape(input_shape)
# test in functional API
if fixed_batch_size:
inp = Input(batch_shape=input_shape, dtype=input_dtype)
else:
inp = Input(shape=input_shape[1:], dtype=input_dtype)
outp = layer(inp)
assert K.dtype(outp) == expected_output_dtype
# check with the functional API
model = Model(inp, outp)
actual_output = model.predict(input_data)
actual_output_shape = actual_output.shape
for expected_dim, actual_dim in zip(expected_output_shape,
actual_output_shape):
if expected_dim is not None:
assert expected_dim == actual_dim
if expected_output is not None:
assert_allclose(actual_output, expected_output, rtol=1e-3)
# test serialization, weight setting at model level
model_config = model.get_config()
recovered_model = model.__class__.from_config(model_config)
if model.weights:
weights = model.get_weights()
recovered_model.set_weights(weights)
_output = recovered_model.predict(input_data)
assert_allclose(_output, actual_output, rtol=1e-3)
# test training mode (e.g. useful when the layer has a
# different behavior at training and testing time).
if has_arg(layer.call, 'training'):
model.compile('rmsprop', 'mse')
model.train_on_batch(input_data, actual_output)
# test instantiation from layer config
layer_config = layer.get_config()
layer_config['batch_input_shape'] = input_shape
layer = layer.__class__.from_config(layer_config)
# for further checks in the caller function
return actual_output
@pytest.mark.parametrize('dummy', [None], ids=[get_backend().upper()])
def test_pixel_shuffler(dummy): # pylint:disable=unused-argument
""" Pixel Shuffler layer test """
layer_test(layers.PixelShuffler, input_shape=(2, 4, 4, 1024))
@pytest.mark.skipif(get_backend() == "amd", reason="amd does not support this layer")
@pytest.mark.parametrize('dummy', [None], ids=[get_backend().upper()])
def test_subpixel_upscaling(dummy): # pylint:disable=unused-argument
""" Sub Pixel up-scaling layer test """
layer_test(layers.SubPixelUpscaling, input_shape=(2, 4, 4, 1024))
@pytest.mark.parametrize('dummy', [None], ids=[get_backend().upper()])
def test_reflection_padding_2d(dummy): # pylint:disable=unused-argument
""" Reflection Padding 2D layer test """
layer_test(layers.ReflectionPadding2D, input_shape=(2, 4, 4, 512))
@pytest.mark.parametrize('dummy', [None], ids=[get_backend().upper()])
def test_global_min_pooling_2d(dummy): # pylint:disable=unused-argument
""" Global Min Pooling 2D layer test """
layer_test(layers.GlobalMinPooling2D, input_shape=(2, 4, 4, 1024))
@pytest.mark.parametrize('dummy', [None], ids=[get_backend().upper()])
def test_global_std_pooling_2d(dummy): # pylint:disable=unused-argument
""" Global Standard Deviation Pooling 2D layer test """
layer_test(layers.GlobalStdDevPooling2D, input_shape=(2, 4, 4, 1024))
@pytest.mark.parametrize('dummy', [None], ids=[get_backend().upper()])
def test_l2_normalize(dummy): # pylint:disable=unused-argument
""" L2 Normalize layer test """
layer_test(layers.L2_normalize, kwargs={"axis": 1}, input_shape=(2, 4, 4, 1024))