mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 11:53:26 -04:00
* Remove custom keras importer * first round keras imports fix * launcher.py: Remove KerasFinder references * 2nd round keras imports update (lib and extract) * 3rd round keras imports update (train) * remove KerasFinder from tests * 4th round keras imports update (tests)
68 lines
2.1 KiB
Python
68 lines
2.1 KiB
Python
#!/usr/bin/env python3
|
|
""" Tests for Faceswap Initializers.
|
|
|
|
Adapted from Keras tests.
|
|
"""
|
|
|
|
import pytest
|
|
import numpy as np
|
|
|
|
from lib.model import initializers
|
|
from lib.utils import get_backend
|
|
|
|
if get_backend() == "amd":
|
|
from keras import backend as K
|
|
from keras import initializers as k_initializers
|
|
else:
|
|
# Ignore linting errors from Tensorflow's thoroughly broken import system
|
|
from tensorflow.keras import backend as K # pylint:disable=import-error
|
|
from tensorflow.keras import initializers as k_initializers # pylint:disable=import-error
|
|
|
|
|
|
CONV_SHAPE = (3, 3, 256, 2048)
|
|
CONV_ID = get_backend().upper()
|
|
|
|
|
|
def _runner(init, shape, target_mean=None, target_std=None,
|
|
target_max=None, target_min=None):
|
|
variable = K.variable(init(shape))
|
|
output = K.get_value(variable)
|
|
lim = 3e-2
|
|
if target_std is not None:
|
|
assert abs(output.std() - target_std) < lim
|
|
if target_mean is not None:
|
|
assert abs(output.mean() - target_mean) < lim
|
|
if target_max is not None:
|
|
assert abs(output.max() - target_max) < lim
|
|
if target_min is not None:
|
|
assert abs(output.min() - target_min) < lim
|
|
|
|
|
|
@pytest.mark.parametrize('tensor_shape', [CONV_SHAPE], ids=[CONV_ID])
|
|
def test_icnr(tensor_shape):
|
|
""" ICNR Initialization Test
|
|
|
|
Parameters
|
|
----------
|
|
tensor_shape: tuple
|
|
The shape of the tensor to feed to the initializer
|
|
"""
|
|
fan_in, _ = initializers.compute_fans(tensor_shape)
|
|
std = np.sqrt(2. / fan_in)
|
|
_runner(initializers.ICNR(initializer=k_initializers.he_uniform(), scale=2), tensor_shape,
|
|
target_mean=0, target_std=std)
|
|
|
|
|
|
@pytest.mark.parametrize('tensor_shape', [CONV_SHAPE], ids=[CONV_ID])
|
|
def test_convolution_aware(tensor_shape):
|
|
""" Convolution Aware Initialization Test
|
|
|
|
Parameters
|
|
----------
|
|
tensor_shape: tuple
|
|
The shape of the tensor to feed to the initializer
|
|
"""
|
|
fan_in, _ = initializers.compute_fans(tensor_shape)
|
|
std = np.sqrt(2. / fan_in)
|
|
_runner(initializers.ConvolutionAware(seed=123), tensor_shape,
|
|
target_mean=0, target_std=std)
|