1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/plugins/train/model/unbalanced.py
torzdf aa39234538
Update all Keras Imports to be conditional (#1214)
* Remove custom keras importer

* first round keras imports fix

* launcher.py: Remove KerasFinder references

* 2nd round keras imports update (lib and extract)

* 3rd round keras imports update (train)

* remove KerasFinder from tests

* 4th round keras imports update (tests)
2022-05-03 20:18:39 +01:00

146 lines
7.4 KiB
Python

#!/usr/bin/env python3
""" Unbalanced Model
Based on the original https://www.reddit.com/r/deepfakes/
code sample + contributions """
from lib.model.nn_blocks import Conv2DOutput, Conv2DBlock, ResidualBlock, UpscaleBlock
from lib.utils import get_backend
from ._base import ModelBase, KerasModel
if get_backend() == "amd":
from keras.initializers import RandomNormal
from keras.layers import Dense, Flatten, Input, LeakyReLU, Reshape, SpatialDropout2D
else:
# Ignore linting errors from Tensorflow's thoroughly broken import system
from tensorflow.keras.initializers import RandomNormal # noqa pylint:disable=import-error,no-name-in-module
from tensorflow.keras.layers import Dense, Flatten, Input, LeakyReLU, Reshape, SpatialDropout2D # noqa pylint:disable=import-error,no-name-in-module
class Model(ModelBase):
""" Unbalanced Faceswap Model """
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.input_shape = (self.config["input_size"], self.config["input_size"], 3)
self.low_mem = self.config.get("lowmem", False)
self.encoder_dim = 512 if self.low_mem else self.config["nodes"]
self.kernel_initializer = RandomNormal(0, 0.02)
def build_model(self, inputs):
""" build the Unbalanced Model. """
encoder = self.encoder()
encoder_a = encoder(inputs[0])
encoder_b = encoder(inputs[1])
outputs = [self.decoder_a()(encoder_a), self.decoder_b()(encoder_b)]
autoencoder = KerasModel(inputs, outputs, name=self.model_name)
return autoencoder
def encoder(self):
""" Unbalanced Encoder """
kwargs = dict(kernel_initializer=self.kernel_initializer)
encoder_complexity = 128 if self.low_mem else self.config["complexity_encoder"]
dense_dim = 384 if self.low_mem else 512
dense_shape = self.input_shape[0] // 16
input_ = Input(shape=self.input_shape)
var_x = input_
var_x = Conv2DBlock(encoder_complexity,
normalization="instance",
activation="leakyrelu",
**kwargs)(var_x)
var_x = Conv2DBlock(encoder_complexity * 2,
normalization="instance",
activation="leakyrelu",
**kwargs)(var_x)
var_x = Conv2DBlock(encoder_complexity * 4, **kwargs, activation="leakyrelu")(var_x)
var_x = Conv2DBlock(encoder_complexity * 6, **kwargs, activation="leakyrelu")(var_x)
var_x = Conv2DBlock(encoder_complexity * 8, **kwargs, activation="leakyrelu")(var_x)
var_x = Dense(self.encoder_dim,
kernel_initializer=self.kernel_initializer)(Flatten()(var_x))
var_x = Dense(dense_shape * dense_shape * dense_dim,
kernel_initializer=self.kernel_initializer)(var_x)
var_x = Reshape((dense_shape, dense_shape, dense_dim))(var_x)
return KerasModel(input_, var_x, name="encoder")
def decoder_a(self):
""" Decoder for side A """
kwargs = dict(kernel_size=5, kernel_initializer=self.kernel_initializer)
decoder_complexity = 320 if self.low_mem else self.config["complexity_decoder_a"]
dense_dim = 384 if self.low_mem else 512
decoder_shape = self.input_shape[0] // 16
input_ = Input(shape=(decoder_shape, decoder_shape, dense_dim))
var_x = input_
var_x = UpscaleBlock(decoder_complexity, activation="leakyrelu", **kwargs)(var_x)
var_x = SpatialDropout2D(0.25)(var_x)
var_x = UpscaleBlock(decoder_complexity, activation="leakyrelu", **kwargs)(var_x)
if self.low_mem:
var_x = SpatialDropout2D(0.15)(var_x)
else:
var_x = SpatialDropout2D(0.25)(var_x)
var_x = UpscaleBlock(decoder_complexity // 2, activation="leakyrelu", **kwargs)(var_x)
var_x = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu", **kwargs)(var_x)
var_x = Conv2DOutput(3, 5, name="face_out_a")(var_x)
outputs = [var_x]
if self.config.get("learn_mask", False):
var_y = input_
var_y = UpscaleBlock(decoder_complexity, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(decoder_complexity, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(decoder_complexity // 2, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu")(var_y)
var_y = Conv2DOutput(1, 5, name="mask_out_a")(var_y)
outputs.append(var_y)
return KerasModel(input_, outputs=outputs, name="decoder_a")
def decoder_b(self):
""" Decoder for side B """
kwargs = dict(kernel_size=5, kernel_initializer=self.kernel_initializer)
dense_dim = 384 if self.low_mem else self.config["complexity_decoder_b"]
decoder_complexity = 384 if self.low_mem else 512
decoder_shape = self.input_shape[0] // 16
input_ = Input(shape=(decoder_shape, decoder_shape, dense_dim))
var_x = input_
if self.low_mem:
var_x = UpscaleBlock(decoder_complexity, activation="leakyrelu", **kwargs)(var_x)
var_x = UpscaleBlock(decoder_complexity // 2, activation="leakyrelu", **kwargs)(var_x)
var_x = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu", **kwargs)(var_x)
var_x = UpscaleBlock(decoder_complexity // 8, activation="leakyrelu", **kwargs)(var_x)
else:
var_x = UpscaleBlock(decoder_complexity, activation=None, **kwargs)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(decoder_complexity,
kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(decoder_complexity, activation=None, **kwargs)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(decoder_complexity,
kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(decoder_complexity // 2, activation=None, **kwargs)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(decoder_complexity // 2,
kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu", **kwargs)(var_x)
var_x = Conv2DOutput(3, 5, name="face_out_b")(var_x)
outputs = [var_x]
if self.config.get("learn_mask", False):
var_y = input_
var_y = UpscaleBlock(decoder_complexity, activation="leakyrelu")(var_y)
if not self.low_mem:
var_y = UpscaleBlock(decoder_complexity, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(decoder_complexity // 2, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu")(var_y)
if self.low_mem:
var_y = UpscaleBlock(decoder_complexity // 8, activation="leakyrelu")(var_y)
var_y = Conv2DOutput(1, 5, name="mask_out_b")(var_y)
outputs.append(var_y)
return KerasModel(input_, outputs=outputs, name="decoder_b")
def _legacy_mapping(self):
""" The mapping of legacy separate model names to single model names """
return {f"{self.name}_encoder.h5": "encoder",
f"{self.name}_decoder_A.h5": "decoder_a",
f"{self.name}_decoder_B.h5": "decoder_b"}