mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-09 04:36:50 -04:00
* Remove custom keras importer * first round keras imports fix * launcher.py: Remove KerasFinder references * 2nd round keras imports update (lib and extract) * 3rd round keras imports update (train) * remove KerasFinder from tests * 4th round keras imports update (tests)
146 lines
7.4 KiB
Python
146 lines
7.4 KiB
Python
#!/usr/bin/env python3
|
|
""" Unbalanced Model
|
|
Based on the original https://www.reddit.com/r/deepfakes/
|
|
code sample + contributions """
|
|
|
|
from lib.model.nn_blocks import Conv2DOutput, Conv2DBlock, ResidualBlock, UpscaleBlock
|
|
from lib.utils import get_backend
|
|
from ._base import ModelBase, KerasModel
|
|
|
|
if get_backend() == "amd":
|
|
from keras.initializers import RandomNormal
|
|
from keras.layers import Dense, Flatten, Input, LeakyReLU, Reshape, SpatialDropout2D
|
|
else:
|
|
# Ignore linting errors from Tensorflow's thoroughly broken import system
|
|
from tensorflow.keras.initializers import RandomNormal # noqa pylint:disable=import-error,no-name-in-module
|
|
from tensorflow.keras.layers import Dense, Flatten, Input, LeakyReLU, Reshape, SpatialDropout2D # noqa pylint:disable=import-error,no-name-in-module
|
|
|
|
|
|
class Model(ModelBase):
|
|
""" Unbalanced Faceswap Model """
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.input_shape = (self.config["input_size"], self.config["input_size"], 3)
|
|
self.low_mem = self.config.get("lowmem", False)
|
|
self.encoder_dim = 512 if self.low_mem else self.config["nodes"]
|
|
self.kernel_initializer = RandomNormal(0, 0.02)
|
|
|
|
def build_model(self, inputs):
|
|
""" build the Unbalanced Model. """
|
|
encoder = self.encoder()
|
|
encoder_a = encoder(inputs[0])
|
|
encoder_b = encoder(inputs[1])
|
|
|
|
outputs = [self.decoder_a()(encoder_a), self.decoder_b()(encoder_b)]
|
|
|
|
autoencoder = KerasModel(inputs, outputs, name=self.model_name)
|
|
return autoencoder
|
|
|
|
def encoder(self):
|
|
""" Unbalanced Encoder """
|
|
kwargs = dict(kernel_initializer=self.kernel_initializer)
|
|
encoder_complexity = 128 if self.low_mem else self.config["complexity_encoder"]
|
|
dense_dim = 384 if self.low_mem else 512
|
|
dense_shape = self.input_shape[0] // 16
|
|
input_ = Input(shape=self.input_shape)
|
|
|
|
var_x = input_
|
|
var_x = Conv2DBlock(encoder_complexity,
|
|
normalization="instance",
|
|
activation="leakyrelu",
|
|
**kwargs)(var_x)
|
|
var_x = Conv2DBlock(encoder_complexity * 2,
|
|
normalization="instance",
|
|
activation="leakyrelu",
|
|
**kwargs)(var_x)
|
|
var_x = Conv2DBlock(encoder_complexity * 4, **kwargs, activation="leakyrelu")(var_x)
|
|
var_x = Conv2DBlock(encoder_complexity * 6, **kwargs, activation="leakyrelu")(var_x)
|
|
var_x = Conv2DBlock(encoder_complexity * 8, **kwargs, activation="leakyrelu")(var_x)
|
|
var_x = Dense(self.encoder_dim,
|
|
kernel_initializer=self.kernel_initializer)(Flatten()(var_x))
|
|
var_x = Dense(dense_shape * dense_shape * dense_dim,
|
|
kernel_initializer=self.kernel_initializer)(var_x)
|
|
var_x = Reshape((dense_shape, dense_shape, dense_dim))(var_x)
|
|
return KerasModel(input_, var_x, name="encoder")
|
|
|
|
def decoder_a(self):
|
|
""" Decoder for side A """
|
|
kwargs = dict(kernel_size=5, kernel_initializer=self.kernel_initializer)
|
|
decoder_complexity = 320 if self.low_mem else self.config["complexity_decoder_a"]
|
|
dense_dim = 384 if self.low_mem else 512
|
|
decoder_shape = self.input_shape[0] // 16
|
|
input_ = Input(shape=(decoder_shape, decoder_shape, dense_dim))
|
|
|
|
var_x = input_
|
|
|
|
var_x = UpscaleBlock(decoder_complexity, activation="leakyrelu", **kwargs)(var_x)
|
|
var_x = SpatialDropout2D(0.25)(var_x)
|
|
var_x = UpscaleBlock(decoder_complexity, activation="leakyrelu", **kwargs)(var_x)
|
|
if self.low_mem:
|
|
var_x = SpatialDropout2D(0.15)(var_x)
|
|
else:
|
|
var_x = SpatialDropout2D(0.25)(var_x)
|
|
var_x = UpscaleBlock(decoder_complexity // 2, activation="leakyrelu", **kwargs)(var_x)
|
|
var_x = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu", **kwargs)(var_x)
|
|
var_x = Conv2DOutput(3, 5, name="face_out_a")(var_x)
|
|
outputs = [var_x]
|
|
|
|
if self.config.get("learn_mask", False):
|
|
var_y = input_
|
|
var_y = UpscaleBlock(decoder_complexity, activation="leakyrelu")(var_y)
|
|
var_y = UpscaleBlock(decoder_complexity, activation="leakyrelu")(var_y)
|
|
var_y = UpscaleBlock(decoder_complexity // 2, activation="leakyrelu")(var_y)
|
|
var_y = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu")(var_y)
|
|
var_y = Conv2DOutput(1, 5, name="mask_out_a")(var_y)
|
|
outputs.append(var_y)
|
|
return KerasModel(input_, outputs=outputs, name="decoder_a")
|
|
|
|
def decoder_b(self):
|
|
""" Decoder for side B """
|
|
kwargs = dict(kernel_size=5, kernel_initializer=self.kernel_initializer)
|
|
dense_dim = 384 if self.low_mem else self.config["complexity_decoder_b"]
|
|
decoder_complexity = 384 if self.low_mem else 512
|
|
decoder_shape = self.input_shape[0] // 16
|
|
input_ = Input(shape=(decoder_shape, decoder_shape, dense_dim))
|
|
|
|
var_x = input_
|
|
if self.low_mem:
|
|
var_x = UpscaleBlock(decoder_complexity, activation="leakyrelu", **kwargs)(var_x)
|
|
var_x = UpscaleBlock(decoder_complexity // 2, activation="leakyrelu", **kwargs)(var_x)
|
|
var_x = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu", **kwargs)(var_x)
|
|
var_x = UpscaleBlock(decoder_complexity // 8, activation="leakyrelu", **kwargs)(var_x)
|
|
else:
|
|
var_x = UpscaleBlock(decoder_complexity, activation=None, **kwargs)(var_x)
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
var_x = ResidualBlock(decoder_complexity,
|
|
kernel_initializer=self.kernel_initializer)(var_x)
|
|
var_x = UpscaleBlock(decoder_complexity, activation=None, **kwargs)(var_x)
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
var_x = ResidualBlock(decoder_complexity,
|
|
kernel_initializer=self.kernel_initializer)(var_x)
|
|
var_x = UpscaleBlock(decoder_complexity // 2, activation=None, **kwargs)(var_x)
|
|
var_x = LeakyReLU(alpha=0.2)(var_x)
|
|
var_x = ResidualBlock(decoder_complexity // 2,
|
|
kernel_initializer=self.kernel_initializer)(var_x)
|
|
var_x = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu", **kwargs)(var_x)
|
|
var_x = Conv2DOutput(3, 5, name="face_out_b")(var_x)
|
|
outputs = [var_x]
|
|
|
|
if self.config.get("learn_mask", False):
|
|
var_y = input_
|
|
var_y = UpscaleBlock(decoder_complexity, activation="leakyrelu")(var_y)
|
|
if not self.low_mem:
|
|
var_y = UpscaleBlock(decoder_complexity, activation="leakyrelu")(var_y)
|
|
var_y = UpscaleBlock(decoder_complexity // 2, activation="leakyrelu")(var_y)
|
|
var_y = UpscaleBlock(decoder_complexity // 4, activation="leakyrelu")(var_y)
|
|
if self.low_mem:
|
|
var_y = UpscaleBlock(decoder_complexity // 8, activation="leakyrelu")(var_y)
|
|
var_y = Conv2DOutput(1, 5, name="mask_out_b")(var_y)
|
|
outputs.append(var_y)
|
|
return KerasModel(input_, outputs=outputs, name="decoder_b")
|
|
|
|
def _legacy_mapping(self):
|
|
""" The mapping of legacy separate model names to single model names """
|
|
return {f"{self.name}_encoder.h5": "encoder",
|
|
f"{self.name}_decoder_A.h5": "decoder_a",
|
|
f"{self.name}_decoder_B.h5": "decoder_b"}
|