1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/lib/model/normalization/normalization_tf.py
torzdf aa39234538
Update all Keras Imports to be conditional (#1214)
* Remove custom keras importer

* first round keras imports fix

* launcher.py: Remove KerasFinder references

* 2nd round keras imports update (lib and extract)

* 3rd round keras imports update (train)

* remove KerasFinder from tests

* 4th round keras imports update (tests)
2022-05-03 20:18:39 +01:00

171 lines
6.3 KiB
Python

#!/usr/bin/env python3
""" Normalization methods for faceswap.py specific to Tensorflow backend """
import inspect
import sys
import tensorflow as tf
# Ignore linting errors from Tensorflow's thoroughly broken import system
from tensorflow.keras import backend as K # pylint:disable=import-error
from tensorflow.keras.layers import Layer, LayerNormalization # noqa pylint:disable=no-name-in-module,unused-import,import-error
from tensorflow.keras.utils import get_custom_objects # noqa pylint:disable=no-name-in-module,import-error
class RMSNormalization(Layer):
""" Root Mean Square Layer Normalization (Biao Zhang, Rico Sennrich, 2019)
RMSNorm is a simplification of the original layer normalization (LayerNorm). LayerNorm is a
regularization technique that might handle the internal covariate shift issue so as to
stabilize the layer activations and improve model convergence. It has been proved quite
successful in NLP-based model. In some cases, LayerNorm has become an essential component
to enable model optimization, such as in the SOTA NMT model Transformer.
RMSNorm simplifies LayerNorm by removing the mean-centering operation, or normalizing layer
activations with RMS statistic.
Parameters
----------
axis: int
The axis to normalize across. Typically this is the features axis. The left-out axes are
typically the batch axis/axes. This argument defaults to `-1`, the last dimension in the
input.
epsilon: float, optional
Small float added to variance to avoid dividing by zero. Default: `1e-8`
partial: float, optional
Partial multiplier for calculating pRMSNorm. Valid values are between `0.0` and `1.0`.
Setting to `0.0` or `1.0` disables. Default: `0.0`
bias: bool, optional
Whether to use a bias term for RMSNorm. Disabled by default because RMSNorm does not
enforce re-centering invariance. Default ``False``
kwargs: dict
Standard keras layer kwargs
References
----------
- RMS Normalization - https://arxiv.org/abs/1910.07467
- Official implementation - https://github.com/bzhangGo/rmsnorm
"""
def __init__(self, axis=-1, epsilon=1e-8, partial=0.0, bias=False, **kwargs):
self.scale = None
self.offset = 0
super().__init__(**kwargs)
# Checks
if not isinstance(axis, int):
raise TypeError(f"Expected an int for the argument 'axis', but received: {axis}")
if not 0.0 <= partial <= 1.0:
raise ValueError(f"partial must be between 0.0 and 1.0, but received {partial}")
self.axis = axis
self.epsilon = epsilon
self.partial = partial
self.bias = bias
self.offset = 0.
def build(self, input_shape):
""" Validate and populate :attr:`axis`
Parameters
----------
input_shape: tensor
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
reference for weight shape computations.
"""
ndims = len(input_shape)
if ndims is None:
raise ValueError(f"Input shape {input_shape} has undefined rank.")
# Resolve negative axis
if self.axis < 0:
self.axis += ndims
# Validate axes
if self.axis < 0 or self.axis >= ndims:
raise ValueError(f"Invalid axis: {self.axis}")
param_shape = [input_shape[self.axis]]
self.scale = self.add_weight(
name="scale",
shape=param_shape,
initializer="ones")
if self.bias:
self.offset = self.add_weight(
name="offset",
shape=param_shape,
initializer="zeros")
self.built = True # pylint:disable=attribute-defined-outside-init
def call(self, inputs, **kwargs): # pylint:disable=unused-argument
""" Call Root Mean Square Layer Normalization
Parameters
----------
inputs: tensor
Input tensor, or list/tuple of input tensors
Returns
-------
tensor
A tensor or list/tuple of tensors
"""
# Compute the axes along which to reduce the mean / variance
input_shape = K.int_shape(inputs)
layer_size = input_shape[self.axis]
if self.partial in (0.0, 1.0):
mean_square = K.mean(K.square(inputs), axis=self.axis, keepdims=True)
else:
partial_size = int(layer_size * self.partial)
partial_x, _ = tf.split( # pylint:disable=redundant-keyword-arg,no-value-for-parameter
inputs,
[partial_size, layer_size - partial_size],
axis=self.axis)
mean_square = K.mean(K.square(partial_x), axis=self.axis, keepdims=True)
recip_square_root = tf.math.rsqrt(mean_square + self.epsilon)
output = self.scale * inputs * recip_square_root + self.offset
return output
def compute_output_shape(self, input_shape): # pylint:disable=no-self-use
""" The output shape of the layer is the same as the input shape.
Parameters
----------
input_shape: tuple
The input shape to the layer
Returns
-------
tuple
The output shape to the layer
"""
return input_shape
def get_config(self):
"""Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a
layer. The same layer can be reinstated later (without its trained weights) from this
configuration.
The configuration of a layer does not include connectivity information, nor the layer
class name. These are handled by `Network` (one layer of abstraction above).
Returns
--------
dict
A python dictionary containing the layer configuration
"""
base_config = super().get_config()
config = dict(axis=self.axis,
epsilon=self.epsilon,
partial=self.partial,
bias=self.bias)
return dict(list(base_config.items()) + list(config.items()))
# Update normalization into Keras custom objects
for name, obj in inspect.getmembers(sys.modules[__name__]):
if inspect.isclass(obj) and obj.__module__ == __name__:
get_custom_objects().update({name: obj})