mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-07 10:43:27 -04:00
* Remove custom keras importer * first round keras imports fix * launcher.py: Remove KerasFinder references * 2nd round keras imports update (lib and extract) * 3rd round keras imports update (train) * remove KerasFinder from tests * 4th round keras imports update (tests)
501 lines
20 KiB
Python
501 lines
20 KiB
Python
#!/usr/bin/env python3
|
|
""" Normalization methods for faceswap.py common to both Plaid and Tensorflow Backends """
|
|
|
|
import sys
|
|
import inspect
|
|
|
|
from lib.utils import get_backend
|
|
|
|
if get_backend() == "amd":
|
|
from keras.utils import get_custom_objects # pylint:disable=no-name-in-module
|
|
from keras.layers import Layer, InputSpec
|
|
from keras import initializers, regularizers, constraints, backend as K
|
|
from keras.backend import normalize_data_format # pylint:disable=no-name-in-module
|
|
else:
|
|
# Ignore linting errors from Tensorflow's thoroughly broken import system
|
|
from tensorflow.keras.utils import get_custom_objects # noqa pylint:disable=no-name-in-module,import-error
|
|
from tensorflow.keras.layers import Layer, InputSpec # noqa pylint:disable=no-name-in-module,import-error
|
|
from tensorflow.keras import initializers, regularizers, constraints, backend as K # noqa pylint:disable=no-name-in-module,import-error
|
|
from tensorflow.python.keras.utils.conv_utils import normalize_data_format # noqa pylint:disable=no-name-in-module
|
|
|
|
|
|
class InstanceNormalization(Layer):
|
|
"""Instance normalization layer (Lei Ba et al, 2016, Ulyanov et al., 2016).
|
|
|
|
Normalize the activations of the previous layer at each step, i.e. applies a transformation
|
|
that maintains the mean activation close to 0 and the activation standard deviation close to 1.
|
|
|
|
Parameters
|
|
----------
|
|
axis: int, optional
|
|
The axis that should be normalized (typically the features axis). For instance, after a
|
|
`Conv2D` layer with `data_format="channels_first"`, set `axis=1` in
|
|
:class:`InstanceNormalization`. Setting `axis=None` will normalize all values in each
|
|
instance of the batch. Axis 0 is the batch dimension. `axis` cannot be set to 0 to avoid
|
|
errors. Default: ``None``
|
|
epsilon: float, optional
|
|
Small float added to variance to avoid dividing by zero. Default: `1e-3`
|
|
center: bool, optional
|
|
If ``True``, add offset of `beta` to normalized tensor. If ``False``, `beta` is ignored.
|
|
Default: ``True``
|
|
scale: bool, optional
|
|
If ``True``, multiply by `gamma`. If ``False``, `gamma` is not used. When the next layer
|
|
is linear (also e.g. `relu`), this can be disabled since the scaling will be done by
|
|
the next layer. Default: ``True``
|
|
beta_initializer: str, optional
|
|
Initializer for the beta weight. Default: `"zeros"`
|
|
gamma_initializer: str, optional
|
|
Initializer for the gamma weight. Default: `"ones"`
|
|
beta_regularizer: str, optional
|
|
Optional regularizer for the beta weight. Default: ``None``
|
|
gamma_regularizer: str, optional
|
|
Optional regularizer for the gamma weight. Default: ``None``
|
|
beta_constraint: float, optional
|
|
Optional constraint for the beta weight. Default: ``None``
|
|
gamma_constraint: float, optional
|
|
Optional constraint for the gamma weight. Default: ``None``
|
|
|
|
References
|
|
----------
|
|
- Layer Normalization - https://arxiv.org/abs/1607.06450
|
|
|
|
- Instance Normalization: The Missing Ingredient for Fast Stylization - \
|
|
https://arxiv.org/abs/1607.08022
|
|
"""
|
|
# pylint:disable=too-many-instance-attributes,too-many-arguments
|
|
def __init__(self,
|
|
axis=None,
|
|
epsilon=1e-3,
|
|
center=True,
|
|
scale=True,
|
|
beta_initializer="zeros",
|
|
gamma_initializer="ones",
|
|
beta_regularizer=None,
|
|
gamma_regularizer=None,
|
|
beta_constraint=None,
|
|
gamma_constraint=None,
|
|
**kwargs):
|
|
self.beta = None
|
|
self.gamma = None
|
|
super().__init__(**kwargs)
|
|
self.supports_masking = True
|
|
self.axis = axis
|
|
self.epsilon = epsilon
|
|
self.center = center
|
|
self.scale = scale
|
|
self.beta_initializer = initializers.get(beta_initializer)
|
|
self.gamma_initializer = initializers.get(gamma_initializer)
|
|
self.beta_regularizer = regularizers.get(beta_regularizer)
|
|
self.gamma_regularizer = regularizers.get(gamma_regularizer)
|
|
self.beta_constraint = constraints.get(beta_constraint)
|
|
self.gamma_constraint = constraints.get(gamma_constraint)
|
|
|
|
def build(self, input_shape):
|
|
"""Creates the layer weights.
|
|
|
|
Parameters
|
|
----------
|
|
input_shape: tensor
|
|
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
|
|
reference for weight shape computations.
|
|
"""
|
|
ndim = len(input_shape)
|
|
if self.axis == 0:
|
|
raise ValueError("Axis cannot be zero")
|
|
|
|
if (self.axis is not None) and (ndim == 2):
|
|
raise ValueError("Cannot specify axis for rank 1 tensor")
|
|
|
|
self.input_spec = InputSpec(ndim=ndim) # pylint:disable=attribute-defined-outside-init
|
|
|
|
if self.axis is None:
|
|
shape = (1,)
|
|
else:
|
|
shape = (input_shape[self.axis],)
|
|
|
|
if self.scale:
|
|
self.gamma = self.add_weight(shape=shape,
|
|
name="gamma",
|
|
initializer=self.gamma_initializer,
|
|
regularizer=self.gamma_regularizer,
|
|
constraint=self.gamma_constraint)
|
|
else:
|
|
self.gamma = None
|
|
if self.center:
|
|
self.beta = self.add_weight(shape=shape,
|
|
name="beta",
|
|
initializer=self.beta_initializer,
|
|
regularizer=self.beta_regularizer,
|
|
constraint=self.beta_constraint)
|
|
else:
|
|
self.beta = None
|
|
self.built = True # pylint:disable=attribute-defined-outside-init
|
|
|
|
def call(self, inputs, training=None): # pylint:disable=arguments-differ,unused-argument
|
|
"""This is where the layer's logic lives.
|
|
|
|
Parameters
|
|
----------
|
|
inputs: tensor
|
|
Input tensor, or list/tuple of input tensors
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
A tensor or list/tuple of tensors
|
|
"""
|
|
input_shape = K.int_shape(inputs)
|
|
reduction_axes = list(range(0, len(input_shape)))
|
|
|
|
if self.axis is not None:
|
|
del reduction_axes[self.axis]
|
|
|
|
del reduction_axes[0]
|
|
|
|
mean = K.mean(inputs, reduction_axes, keepdims=True)
|
|
stddev = K.std(inputs, reduction_axes, keepdims=True) + self.epsilon
|
|
normed = (inputs - mean) / stddev
|
|
|
|
broadcast_shape = [1] * len(input_shape)
|
|
if self.axis is not None:
|
|
broadcast_shape[self.axis] = input_shape[self.axis]
|
|
|
|
if self.scale:
|
|
broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
|
|
normed = normed * broadcast_gamma
|
|
if self.center:
|
|
broadcast_beta = K.reshape(self.beta, broadcast_shape)
|
|
normed = normed + broadcast_beta
|
|
return normed
|
|
|
|
def get_config(self):
|
|
"""Returns the config of the layer.
|
|
|
|
A layer config is a Python dictionary (serializable) containing the configuration of a
|
|
layer. The same layer can be reinstated later (without its trained weights) from this
|
|
configuration.
|
|
|
|
The configuration of a layer does not include connectivity information, nor the layer
|
|
class name. These are handled by `Network` (one layer of abstraction above).
|
|
|
|
Returns
|
|
--------
|
|
dict
|
|
A python dictionary containing the layer configuration
|
|
"""
|
|
config = {
|
|
"axis": self.axis,
|
|
"epsilon": self.epsilon,
|
|
"center": self.center,
|
|
"scale": self.scale,
|
|
"beta_initializer": initializers.serialize(self.beta_initializer),
|
|
"gamma_initializer": initializers.serialize(self.gamma_initializer),
|
|
"beta_regularizer": regularizers.serialize(self.beta_regularizer),
|
|
"gamma_regularizer": regularizers.serialize(self.gamma_regularizer),
|
|
"beta_constraint": constraints.serialize(self.beta_constraint),
|
|
"gamma_constraint": constraints.serialize(self.gamma_constraint)
|
|
}
|
|
base_config = super().get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
|
|
class AdaInstanceNormalization(Layer):
|
|
""" Adaptive Instance Normalization Layer for Keras.
|
|
|
|
Parameters
|
|
----------
|
|
axis: int, optional
|
|
The axis that should be normalized (typically the features axis). For instance, after a
|
|
`Conv2D` layer with `data_format="channels_first"`, set `axis=1` in
|
|
:class:`InstanceNormalization`. Setting `axis=None` will normalize all values in each
|
|
instance of the batch. Axis 0 is the batch dimension. `axis` cannot be set to 0 to avoid
|
|
errors. Default: ``None``
|
|
momentum: float, optional
|
|
Momentum for the moving mean and the moving variance. Default: `0.99`
|
|
epsilon: float, optional
|
|
Small float added to variance to avoid dividing by zero. Default: `1e-3`
|
|
center: bool, optional
|
|
If ``True``, add offset of `beta` to normalized tensor. If ``False``, `beta` is ignored.
|
|
Default: ``True``
|
|
scale: bool, optional
|
|
If ``True``, multiply by `gamma`. If ``False``, `gamma` is not used. When the next layer
|
|
is linear (also e.g. `relu`), this can be disabled since the scaling will be done by
|
|
the next layer. Default: ``True``
|
|
|
|
References
|
|
----------
|
|
Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization - \
|
|
https://arxiv.org/abs/1703.06868
|
|
"""
|
|
def __init__(self, axis=-1, momentum=0.99, epsilon=1e-3, center=True, scale=True, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.axis = axis
|
|
self.momentum = momentum
|
|
self.epsilon = epsilon
|
|
self.center = center
|
|
self.scale = scale
|
|
|
|
def build(self, input_shape):
|
|
"""Creates the layer weights.
|
|
|
|
Parameters
|
|
----------
|
|
input_shape: tensor
|
|
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
|
|
reference for weight shape computations.
|
|
"""
|
|
dim = input_shape[0][self.axis]
|
|
if dim is None:
|
|
raise ValueError('Axis ' + str(self.axis) + ' of '
|
|
'input tensor should have a defined dimension '
|
|
'but the layer received an input with shape ' +
|
|
str(input_shape[0]) + '.')
|
|
|
|
super().build(input_shape)
|
|
|
|
def call(self, inputs, training=None): # pylint:disable=unused-argument,arguments-differ
|
|
"""This is where the layer's logic lives.
|
|
|
|
Parameters
|
|
----------
|
|
inputs: tensor
|
|
Input tensor, or list/tuple of input tensors
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
A tensor or list/tuple of tensors
|
|
"""
|
|
input_shape = K.int_shape(inputs[0])
|
|
reduction_axes = list(range(0, len(input_shape)))
|
|
|
|
beta = inputs[1]
|
|
gamma = inputs[2]
|
|
|
|
if self.axis is not None:
|
|
del reduction_axes[self.axis]
|
|
|
|
del reduction_axes[0]
|
|
mean = K.mean(inputs[0], reduction_axes, keepdims=True)
|
|
stddev = K.std(inputs[0], reduction_axes, keepdims=True) + self.epsilon
|
|
normed = (inputs[0] - mean) / stddev
|
|
|
|
return normed * gamma + beta
|
|
|
|
def get_config(self):
|
|
"""Returns the config of the layer.
|
|
|
|
The Keras configuration for the layer.
|
|
|
|
Returns
|
|
--------
|
|
dict
|
|
A python dictionary containing the layer configuration
|
|
"""
|
|
config = {
|
|
'axis': self.axis,
|
|
'momentum': self.momentum,
|
|
'epsilon': self.epsilon,
|
|
'center': self.center,
|
|
'scale': self.scale
|
|
}
|
|
base_config = super().get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
def compute_output_shape(self, input_shape): # pylint:disable=no-self-use
|
|
""" Calculate the output shape from this layer.
|
|
|
|
Parameters
|
|
----------
|
|
input_shape: tuple
|
|
The input shape to the layer
|
|
|
|
Returns
|
|
-------
|
|
int
|
|
The output shape to the layer
|
|
"""
|
|
return input_shape[0]
|
|
|
|
|
|
class GroupNormalization(Layer):
|
|
""" Group Normalization
|
|
|
|
Parameters
|
|
----------
|
|
axis: int, optional
|
|
The axis that should be normalized (typically the features axis). For instance, after a
|
|
`Conv2D` layer with `data_format="channels_first"`, set `axis=1` in
|
|
:class:`InstanceNormalization`. Setting `axis=None` will normalize all values in each
|
|
instance of the batch. Axis 0 is the batch dimension. `axis` cannot be set to 0 to avoid
|
|
errors. Default: ``None``
|
|
gamma_init: str, optional
|
|
Initializer for the gamma weight. Default: `"one"`
|
|
beta_init: str, optional
|
|
Initializer for the beta weight. Default `"zero"`
|
|
gamma_regularizer: varies, optional
|
|
Optional regularizer for the gamma weight. Default: ``None``
|
|
beta_regularizer: varies, optional
|
|
Optional regularizer for the beta weight. Default ``None``
|
|
epsilon: float, optional
|
|
Small float added to variance to avoid dividing by zero. Default: `1e-3`
|
|
group: int, optional
|
|
The group size. Default: `32`
|
|
data_format: ["channels_first", "channels_last"], optional
|
|
The required data format. Optional. Default: ``None``
|
|
kwargs: dict
|
|
Any additional standard Keras Layer key word arguments
|
|
|
|
References
|
|
----------
|
|
Shaoanlu GAN: https://github.com/shaoanlu/faceswap-GAN
|
|
"""
|
|
# pylint:disable=too-many-instance-attributes
|
|
def __init__(self, axis=-1, gamma_init='one', beta_init='zero', gamma_regularizer=None,
|
|
beta_regularizer=None, epsilon=1e-6, group=32, data_format=None, **kwargs):
|
|
self.beta = None
|
|
self.gamma = None
|
|
super().__init__(**kwargs)
|
|
self.axis = axis if isinstance(axis, (list, tuple)) else [axis]
|
|
self.gamma_init = initializers.get(gamma_init)
|
|
self.beta_init = initializers.get(beta_init)
|
|
self.gamma_regularizer = regularizers.get(gamma_regularizer)
|
|
self.beta_regularizer = regularizers.get(beta_regularizer)
|
|
self.epsilon = epsilon
|
|
self.group = group
|
|
self.data_format = normalize_data_format(data_format)
|
|
|
|
self.supports_masking = True
|
|
|
|
def build(self, input_shape):
|
|
"""Creates the layer weights.
|
|
|
|
Parameters
|
|
----------
|
|
input_shape: tensor
|
|
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
|
|
reference for weight shape computations.
|
|
"""
|
|
input_spec = [InputSpec(shape=input_shape)]
|
|
self.input_spec = input_spec # pylint:disable=attribute-defined-outside-init
|
|
shape = [1 for _ in input_shape]
|
|
if self.data_format == 'channels_last':
|
|
channel_axis = -1
|
|
shape[channel_axis] = input_shape[channel_axis]
|
|
elif self.data_format == 'channels_first':
|
|
channel_axis = 1
|
|
shape[channel_axis] = input_shape[channel_axis]
|
|
# for i in self.axis:
|
|
# shape[i] = input_shape[i]
|
|
self.gamma = self.add_weight(shape=shape,
|
|
initializer=self.gamma_init,
|
|
regularizer=self.gamma_regularizer,
|
|
name='gamma')
|
|
self.beta = self.add_weight(shape=shape,
|
|
initializer=self.beta_init,
|
|
regularizer=self.beta_regularizer,
|
|
name='beta')
|
|
self.built = True # pylint:disable=attribute-defined-outside-init
|
|
|
|
def call(self, inputs, mask=None): # pylint:disable=unused-argument,arguments-differ
|
|
"""This is where the layer's logic lives.
|
|
|
|
Parameters
|
|
----------
|
|
inputs: tensor
|
|
Input tensor, or list/tuple of input tensors
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
A tensor or list/tuple of tensors
|
|
"""
|
|
input_shape = K.int_shape(inputs)
|
|
if len(input_shape) != 4 and len(input_shape) != 2:
|
|
raise ValueError('Inputs should have rank ' +
|
|
str(4) + " or " + str(2) +
|
|
'; Received input shape:', str(input_shape))
|
|
|
|
if len(input_shape) == 4:
|
|
if self.data_format == 'channels_last':
|
|
batch_size, height, width, channels = input_shape
|
|
if batch_size is None:
|
|
batch_size = -1
|
|
|
|
if channels < self.group:
|
|
raise ValueError('Input channels should be larger than group size' +
|
|
'; Received input channels: ' + str(channels) +
|
|
'; Group size: ' + str(self.group))
|
|
|
|
var_x = K.reshape(inputs, (batch_size,
|
|
height,
|
|
width,
|
|
self.group,
|
|
channels // self.group))
|
|
mean = K.mean(var_x, axis=[1, 2, 4], keepdims=True)
|
|
std = K.sqrt(K.var(var_x, axis=[1, 2, 4], keepdims=True) + self.epsilon)
|
|
var_x = (var_x - mean) / std
|
|
|
|
var_x = K.reshape(var_x, (batch_size, height, width, channels))
|
|
retval = self.gamma * var_x + self.beta
|
|
elif self.data_format == 'channels_first':
|
|
batch_size, channels, height, width = input_shape
|
|
if batch_size is None:
|
|
batch_size = -1
|
|
|
|
if channels < self.group:
|
|
raise ValueError('Input channels should be larger than group size' +
|
|
'; Received input channels: ' + str(channels) +
|
|
'; Group size: ' + str(self.group))
|
|
|
|
var_x = K.reshape(inputs, (batch_size,
|
|
self.group,
|
|
channels // self.group,
|
|
height,
|
|
width))
|
|
mean = K.mean(var_x, axis=[2, 3, 4], keepdims=True)
|
|
std = K.sqrt(K.var(var_x, axis=[2, 3, 4], keepdims=True) + self.epsilon)
|
|
var_x = (var_x - mean) / std
|
|
|
|
var_x = K.reshape(var_x, (batch_size, channels, height, width))
|
|
retval = self.gamma * var_x + self.beta
|
|
|
|
elif len(input_shape) == 2:
|
|
reduction_axes = list(range(0, len(input_shape)))
|
|
del reduction_axes[0]
|
|
batch_size, _ = input_shape
|
|
if batch_size is None:
|
|
batch_size = -1
|
|
|
|
mean = K.mean(inputs, keepdims=True)
|
|
std = K.sqrt(K.var(inputs, keepdims=True) + self.epsilon)
|
|
var_x = (inputs - mean) / std
|
|
|
|
retval = self.gamma * var_x + self.beta
|
|
return retval
|
|
|
|
def get_config(self):
|
|
"""Returns the config of the layer.
|
|
|
|
The Keras configuration for the layer.
|
|
|
|
Returns
|
|
--------
|
|
dict
|
|
A python dictionary containing the layer configuration
|
|
"""
|
|
config = {'epsilon': self.epsilon,
|
|
'axis': self.axis,
|
|
'gamma_init': initializers.serialize(self.gamma_init),
|
|
'beta_init': initializers.serialize(self.beta_init),
|
|
'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
|
|
'beta_regularizer': regularizers.serialize(self.gamma_regularizer),
|
|
'group': self.group}
|
|
base_config = super().get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
|
|
# Update normalization into Keras custom objects
|
|
for name, obj in inspect.getmembers(sys.modules[__name__]):
|
|
if inspect.isclass(obj) and obj.__module__ == __name__:
|
|
get_custom_objects().update({name: obj})
|