mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-07 10:43:27 -04:00
616 lines
23 KiB
Python
616 lines
23 KiB
Python
#!/usr/bin/env python3
|
|
""" Helper functions for :mod:`~scripts.extract` and :mod:`~scripts.convert`.
|
|
|
|
Holds the classes for the 2 main Faceswap 'media' objects: Images and Alignments.
|
|
|
|
Holds optional pre/post processing functions for convert and extract.
|
|
"""
|
|
from __future__ import annotations
|
|
import logging
|
|
import os
|
|
import sys
|
|
import typing as T
|
|
|
|
from collections.abc import Iterator
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import imageio
|
|
|
|
from lib.align import Alignments as AlignmentsBase, get_centered_size
|
|
from lib.image import count_frames, read_image
|
|
from lib.utils import (camel_case_split, get_image_paths, _video_extensions)
|
|
|
|
if T.TYPE_CHECKING:
|
|
from collections.abc import Generator
|
|
from argparse import Namespace
|
|
from lib.align import AlignedFace
|
|
from plugins.extract.pipeline import ExtractMedia
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def finalize(images_found: int, num_faces_detected: int, verify_output: bool) -> None:
|
|
""" Output summary statistics at the end of the extract or convert processes.
|
|
|
|
Parameters
|
|
----------
|
|
images_found: int
|
|
The number of images/frames that were processed
|
|
num_faces_detected: int
|
|
The number of faces that have been detected
|
|
verify_output: bool
|
|
``True`` if multiple faces were detected in frames otherwise ``False``.
|
|
"""
|
|
logger.info("-------------------------")
|
|
logger.info("Images found: %s", images_found)
|
|
logger.info("Faces detected: %s", num_faces_detected)
|
|
logger.info("-------------------------")
|
|
|
|
if verify_output:
|
|
logger.info("Note:")
|
|
logger.info("Multiple faces were detected in one or more pictures.")
|
|
logger.info("Double check your results.")
|
|
logger.info("-------------------------")
|
|
|
|
logger.info("Process Succesfully Completed. Shutting Down...")
|
|
|
|
|
|
class Alignments(AlignmentsBase):
|
|
""" Override :class:`lib.align.Alignments` to add custom loading based on command
|
|
line arguments.
|
|
|
|
Parameters
|
|
----------
|
|
arguments: :class:`argparse.Namespace`
|
|
The command line arguments that were passed to Faceswap
|
|
is_extract: bool
|
|
``True`` if the process calling this class is extraction otherwise ``False``
|
|
input_is_video: bool, optional
|
|
``True`` if the input to the process is a video, ``False`` if it is a folder of images.
|
|
Default: False
|
|
"""
|
|
def __init__(self,
|
|
arguments: Namespace,
|
|
is_extract: bool,
|
|
input_is_video: bool = False) -> None:
|
|
logger.debug("Initializing %s: (is_extract: %s, input_is_video: %s)",
|
|
self.__class__.__name__, is_extract, input_is_video)
|
|
self._args = arguments
|
|
self._is_extract = is_extract
|
|
folder, filename = self._set_folder_filename(input_is_video)
|
|
super().__init__(folder, filename=filename)
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
def _set_folder_filename(self, input_is_video: bool) -> tuple[str, str]:
|
|
""" Return the folder and the filename for the alignments file.
|
|
|
|
If the input is a video, the alignments file will be stored in the same folder
|
|
as the video, with filename `<videoname>_alignments`.
|
|
|
|
If the input is a folder of images, the alignments file will be stored in folder with
|
|
the images and just be called 'alignments'
|
|
|
|
Parameters
|
|
----------
|
|
input_is_video: bool, optional
|
|
``True`` if the input to the process is a video, ``False`` if it is a folder of images.
|
|
|
|
Returns
|
|
-------
|
|
folder: str
|
|
The folder where the alignments file will be stored
|
|
filename: str
|
|
The filename of the alignments file
|
|
"""
|
|
if self._args.alignments_path:
|
|
logger.debug("Alignments File provided: '%s'", self._args.alignments_path)
|
|
folder, filename = os.path.split(str(self._args.alignments_path))
|
|
elif input_is_video:
|
|
logger.debug("Alignments from Video File: '%s'", self._args.input_dir)
|
|
folder, filename = os.path.split(self._args.input_dir)
|
|
filename = f"{os.path.splitext(filename)[0]}_alignments.fsa"
|
|
else:
|
|
logger.debug("Alignments from Input Folder: '%s'", self._args.input_dir)
|
|
folder = str(self._args.input_dir)
|
|
filename = "alignments"
|
|
logger.debug("Setting Alignments: (folder: '%s' filename: '%s')", folder, filename)
|
|
return folder, filename
|
|
|
|
def _load(self) -> dict[str, T.Any]:
|
|
""" Override the parent :func:`~lib.align.Alignments._load` to handle skip existing
|
|
frames and faces on extract.
|
|
|
|
If skip existing has been selected, existing alignments are loaded and returned to the
|
|
calling script.
|
|
|
|
Returns
|
|
-------
|
|
dict
|
|
Any alignments that have already been extracted if skip existing has been selected
|
|
otherwise an empty dictionary
|
|
"""
|
|
data: dict[str, T.Any] = {}
|
|
if not self._is_extract and not self.have_alignments_file:
|
|
return data
|
|
if not self._is_extract:
|
|
data = super()._load()
|
|
return data
|
|
|
|
skip_existing = hasattr(self._args, 'skip_existing') and self._args.skip_existing
|
|
skip_faces = hasattr(self._args, 'skip_faces') and self._args.skip_faces
|
|
|
|
if not skip_existing and not skip_faces:
|
|
logger.debug("No skipping selected. Returning empty dictionary")
|
|
return data
|
|
|
|
if not self.have_alignments_file and (skip_existing or skip_faces):
|
|
logger.warning("Skip Existing/Skip Faces selected, but no alignments file found!")
|
|
return data
|
|
|
|
data = super()._load()
|
|
|
|
if skip_faces:
|
|
# Remove items from alignments that have no faces so they will
|
|
# be re-detected
|
|
del_keys = [key for key, val in data.items() if not val["faces"]]
|
|
logger.debug("Frames with no faces selected for redetection: %s", len(del_keys))
|
|
for key in del_keys:
|
|
if key in data:
|
|
logger.trace("Selected for redetection: '%s'", # type:ignore[attr-defined]
|
|
key)
|
|
del data[key]
|
|
return data
|
|
|
|
|
|
class Images():
|
|
""" Handles the loading of frames from a folder of images or a video file for extract
|
|
and convert processes.
|
|
|
|
Parameters
|
|
----------
|
|
arguments: :class:`argparse.Namespace`
|
|
The command line arguments that were passed to Faceswap
|
|
"""
|
|
def __init__(self, arguments: Namespace) -> None:
|
|
logger.debug("Initializing %s", self.__class__.__name__)
|
|
self._args = arguments
|
|
self._is_video = self._check_input_folder()
|
|
self._input_images = self._get_input_images()
|
|
self._images_found = self._count_images()
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
@property
|
|
def is_video(self) -> bool:
|
|
"""bool: ``True`` if the input is a video file otherwise ``False``. """
|
|
return self._is_video
|
|
|
|
@property
|
|
def input_images(self) -> str | list[str]:
|
|
"""str or list: Path to the video file if the input is a video otherwise list of
|
|
image paths. """
|
|
return self._input_images
|
|
|
|
@property
|
|
def images_found(self) -> int:
|
|
"""int: The number of frames that exist in the video file, or the folder of images. """
|
|
return self._images_found
|
|
|
|
def _count_images(self) -> int:
|
|
""" Get the number of Frames from a video file or folder of images.
|
|
|
|
Returns
|
|
-------
|
|
int
|
|
The number of frames in the image source
|
|
"""
|
|
if self._is_video:
|
|
retval = int(count_frames(self._args.input_dir, fast=True))
|
|
else:
|
|
retval = len(self._input_images)
|
|
return retval
|
|
|
|
def _check_input_folder(self) -> bool:
|
|
""" Check whether the input is a folder or video.
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
``True`` if the input is a video otherwise ``False``
|
|
"""
|
|
if not os.path.exists(self._args.input_dir):
|
|
logger.error("Input location %s not found.", self._args.input_dir)
|
|
sys.exit(1)
|
|
if (os.path.isfile(self._args.input_dir) and
|
|
os.path.splitext(self._args.input_dir)[1].lower() in _video_extensions):
|
|
logger.info("Input Video: %s", self._args.input_dir)
|
|
retval = True
|
|
else:
|
|
logger.info("Input Directory: %s", self._args.input_dir)
|
|
retval = False
|
|
return retval
|
|
|
|
def _get_input_images(self) -> str | list[str]:
|
|
""" Return the list of images or path to video file that is to be processed.
|
|
|
|
Returns
|
|
-------
|
|
str or list
|
|
Path to the video file if the input is a video otherwise list of image paths.
|
|
"""
|
|
if self._is_video:
|
|
input_images = self._args.input_dir
|
|
else:
|
|
input_images = get_image_paths(self._args.input_dir)
|
|
|
|
return input_images
|
|
|
|
def load(self) -> Generator[tuple[str, np.ndarray], None, None]:
|
|
""" Generator to load frames from a folder of images or from a video file.
|
|
|
|
Yields
|
|
------
|
|
filename: str
|
|
The filename of the current frame
|
|
image: :class:`numpy.ndarray`
|
|
A single frame
|
|
"""
|
|
iterator = self._load_video_frames if self._is_video else self._load_disk_frames
|
|
for filename, image in iterator():
|
|
yield filename, image
|
|
|
|
def _load_disk_frames(self) -> Generator[tuple[str, np.ndarray], None, None]:
|
|
""" Generator to load frames from a folder of images.
|
|
|
|
Yields
|
|
------
|
|
filename: str
|
|
The filename of the current frame
|
|
image: :class:`numpy.ndarray`
|
|
A single frame
|
|
"""
|
|
logger.debug("Input is separate Frames. Loading images")
|
|
for filename in self._input_images:
|
|
image = read_image(filename, raise_error=False)
|
|
if image is None:
|
|
continue
|
|
yield filename, image
|
|
|
|
def _load_video_frames(self) -> Generator[tuple[str, np.ndarray], None, None]:
|
|
""" Generator to load frames from a video file.
|
|
|
|
Yields
|
|
------
|
|
filename: str
|
|
The filename of the current frame
|
|
image: :class:`numpy.ndarray`
|
|
A single frame
|
|
"""
|
|
logger.debug("Input is video. Capturing frames")
|
|
vidname = os.path.splitext(os.path.basename(self._args.input_dir))[0]
|
|
reader = imageio.get_reader(self._args.input_dir, "ffmpeg") # type:ignore[arg-type]
|
|
for i, frame in enumerate(T.cast(Iterator[np.ndarray], reader)):
|
|
# Convert to BGR for cv2 compatibility
|
|
frame = frame[:, :, ::-1]
|
|
filename = f"{vidname}_{i + 1:06d}.png"
|
|
logger.trace("Loading video frame: '%s'", filename) # type:ignore[attr-defined]
|
|
yield filename, frame
|
|
reader.close()
|
|
|
|
def load_one_image(self, filename) -> np.ndarray:
|
|
""" Obtain a single image for the given filename.
|
|
|
|
Parameters
|
|
----------
|
|
filename: str
|
|
The filename to return the image for
|
|
|
|
Returns
|
|
------
|
|
:class:`numpy.ndarray`
|
|
The image for the requested filename,
|
|
|
|
"""
|
|
logger.trace("Loading image: '%s'", filename) # type:ignore[attr-defined]
|
|
if self._is_video:
|
|
if filename.isdigit():
|
|
frame_no = filename
|
|
else:
|
|
frame_no = os.path.splitext(filename)[0][filename.rfind("_") + 1:]
|
|
logger.trace( # type:ignore[attr-defined]
|
|
"Extracted frame_no %s from filename '%s'", frame_no, filename)
|
|
retval = self._load_one_video_frame(int(frame_no))
|
|
else:
|
|
retval = read_image(filename, raise_error=True)
|
|
return retval
|
|
|
|
def _load_one_video_frame(self, frame_no: int) -> np.ndarray:
|
|
""" Obtain a single frame from a video file.
|
|
|
|
Parameters
|
|
----------
|
|
frame_no: int
|
|
The frame index for the required frame
|
|
|
|
Returns
|
|
------
|
|
:class:`numpy.ndarray`
|
|
The image for the requested frame index,
|
|
"""
|
|
logger.trace("Loading video frame: %s", frame_no) # type:ignore[attr-defined]
|
|
reader = imageio.get_reader(self._args.input_dir, "ffmpeg") # type:ignore[arg-type]
|
|
reader.set_image_index(frame_no - 1)
|
|
frame = reader.get_next_data()[:, :, ::-1] # type:ignore[index]
|
|
reader.close()
|
|
return frame
|
|
|
|
|
|
class PostProcess(): # pylint:disable=too-few-public-methods
|
|
""" Optional pre/post processing tasks for convert and extract.
|
|
|
|
Builds a pipeline of actions that have optionally been requested to be performed
|
|
in this session.
|
|
|
|
Parameters
|
|
----------
|
|
arguments: :class:`argparse.Namespace`
|
|
The command line arguments that were passed to Faceswap
|
|
"""
|
|
def __init__(self, arguments: Namespace) -> None:
|
|
logger.debug("Initializing %s", self.__class__.__name__)
|
|
self._args = arguments
|
|
self._actions = self._set_actions()
|
|
logger.debug("Initialized %s", self.__class__.__name__)
|
|
|
|
def _set_actions(self) -> list[PostProcessAction]:
|
|
""" Compile the requested actions to be performed into a list
|
|
|
|
Returns
|
|
-------
|
|
list
|
|
The list of :class:`PostProcessAction` to be performed
|
|
"""
|
|
postprocess_items = self._get_items()
|
|
actions: list["PostProcessAction"] = []
|
|
for action, options in postprocess_items.items():
|
|
options = {} if options is None else options
|
|
args = options.get("args", tuple())
|
|
kwargs = options.get("kwargs", {})
|
|
args = args if isinstance(args, tuple) else tuple()
|
|
kwargs = kwargs if isinstance(kwargs, dict) else {}
|
|
task = globals()[action](*args, **kwargs)
|
|
if task.valid:
|
|
logger.debug("Adding Postprocess action: '%s'", task)
|
|
actions.append(task)
|
|
|
|
for ppaction in actions:
|
|
action_name = camel_case_split(ppaction.__class__.__name__)
|
|
logger.info("Adding post processing item: %s", " ".join(action_name))
|
|
|
|
return actions
|
|
|
|
def _get_items(self) -> dict[str, dict[str, tuple | dict] | None]:
|
|
""" Check the passed in command line arguments for requested actions,
|
|
|
|
For any requested actions, add the item to the actions list along with
|
|
any relevant arguments and keyword arguments.
|
|
|
|
Returns
|
|
-------
|
|
dict
|
|
The name of the action to be performed as the key. Any action specific
|
|
arguments and keyword arguments as the value.
|
|
"""
|
|
postprocess_items: dict[str, dict[str, tuple | dict] | None] = {}
|
|
# Debug Landmarks
|
|
if (hasattr(self._args, 'debug_landmarks') and self._args.debug_landmarks):
|
|
postprocess_items["DebugLandmarks"] = None
|
|
|
|
logger.debug("Postprocess Items: %s", postprocess_items)
|
|
return postprocess_items
|
|
|
|
def do_actions(self, extract_media: ExtractMedia) -> None:
|
|
""" Perform the requested optional post-processing actions on the given image.
|
|
|
|
Parameters
|
|
----------
|
|
extract_media: :class:`~plugins.extract.pipeline.ExtractMedia`
|
|
The :class:`~plugins.extract.pipeline.ExtractMedia` object to perform the
|
|
action on.
|
|
|
|
Returns
|
|
-------
|
|
:class:`~plugins.extract.pipeline.ExtractMedia`
|
|
The original :class:`~plugins.extract.pipeline.ExtractMedia` with any actions applied
|
|
"""
|
|
for action in self._actions:
|
|
logger.debug("Performing postprocess action: '%s'", action.__class__.__name__)
|
|
action.process(extract_media)
|
|
|
|
|
|
class PostProcessAction(): # pylint: disable=too-few-public-methods
|
|
""" Parent class for Post Processing Actions.
|
|
|
|
Usable in Extract or Convert or both depending on context. Any post-processing actions should
|
|
inherit from this class.
|
|
|
|
Parameters
|
|
-----------
|
|
args: tuple
|
|
Varies for specific post process action
|
|
kwargs: dict
|
|
Varies for specific post process action
|
|
"""
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
logger.debug("Initializing %s: (args: %s, kwargs: %s)",
|
|
self.__class__.__name__, args, kwargs)
|
|
self._valid = True # Set to False if invalid parameters passed in to disable
|
|
logger.debug("Initialized base class %s", self.__class__.__name__)
|
|
|
|
@property
|
|
def valid(self) -> bool:
|
|
"""bool: ``True`` if the action if the parameters passed in for this action are valid,
|
|
otherwise ``False`` """
|
|
return self._valid
|
|
|
|
def process(self, extract_media: ExtractMedia) -> None:
|
|
""" Override for specific post processing action
|
|
|
|
Parameters
|
|
----------
|
|
extract_media: :class:`~plugins.extract.pipeline.ExtractMedia`
|
|
The :class:`~plugins.extract.pipeline.ExtractMedia` object to perform the
|
|
action on.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
class DebugLandmarks(PostProcessAction): # pylint: disable=too-few-public-methods
|
|
""" Draw debug landmarks on face output. Extract Only """
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
super().__init__(self, *args, **kwargs)
|
|
self._face_size = 0
|
|
self._legacy_size = 0
|
|
self._font = cv2.FONT_HERSHEY_SIMPLEX
|
|
self._font_scale = 0.0
|
|
self._font_pad = 0
|
|
|
|
def _initialize_font(self, size: int) -> None:
|
|
""" Set the font scaling sizes on first call
|
|
|
|
Parameters
|
|
----------
|
|
size: int
|
|
The pixel size of the saved aligned face
|
|
"""
|
|
self._font_scale = size / 512
|
|
self._font_pad = size // 64
|
|
|
|
def _border_text(self,
|
|
image: np.ndarray,
|
|
text: str,
|
|
color: tuple[int, int, int],
|
|
position: tuple[int, int]) -> None:
|
|
""" Create text on an image with a black border
|
|
|
|
Parameters
|
|
----------
|
|
image: :class:`numpy.ndarray`
|
|
The image to put bordered text on to
|
|
text: str
|
|
The text to place the image
|
|
color: tuple
|
|
The color of the text
|
|
position: tuple
|
|
The (x, y) co-ordinates to place the text
|
|
"""
|
|
thickness = 2
|
|
for idx in range(2):
|
|
text_color = (0, 0, 0) if idx == 0 else color
|
|
cv2.putText(image,
|
|
text,
|
|
position,
|
|
self._font,
|
|
self._font_scale,
|
|
text_color,
|
|
thickness,
|
|
lineType=cv2.LINE_AA)
|
|
thickness //= 2
|
|
|
|
def _annotate_face_box(self, face: AlignedFace) -> None:
|
|
""" Annotate the face extract box and print the original size in pixels
|
|
|
|
face: :class:`~lib.align.AlignedFace`
|
|
The object containing the aligned face to annotate
|
|
"""
|
|
assert face.face is not None
|
|
color = (0, 255, 0)
|
|
roi = face.get_cropped_roi(face.size, self._face_size, "face")
|
|
cv2.rectangle(face.face, tuple(roi[:2]), tuple(roi[2:]), color, 1)
|
|
|
|
# Size in top right corner
|
|
roi_pnts = np.array([[roi[0], roi[1]],
|
|
[roi[0], roi[3]],
|
|
[roi[2], roi[3]],
|
|
[roi[2], roi[1]]])
|
|
orig_roi = face.transform_points(roi_pnts, invert=True)
|
|
size = int(round(((orig_roi[1][0] - orig_roi[0][0]) ** 2 +
|
|
(orig_roi[1][1] - orig_roi[0][1]) ** 2) ** 0.5))
|
|
text_img = face.face.copy()
|
|
text = f"{size}px"
|
|
text_size = cv2.getTextSize(text, self._font, self._font_scale, 1)[0]
|
|
pos_x = roi[2] - (text_size[0] + self._font_pad)
|
|
pos_y = roi[1] + text_size[1] + self._font_pad
|
|
|
|
self._border_text(text_img, text, color, (pos_x, pos_y))
|
|
cv2.addWeighted(text_img, 0.75, face.face, 0.25, 0, face.face)
|
|
|
|
def _print_stats(self, face: AlignedFace) -> None:
|
|
""" Print various metrics on the output face images
|
|
|
|
Parameters
|
|
----------
|
|
face: :class:`~lib.align.AlignedFace`
|
|
The loaded aligned face
|
|
"""
|
|
assert face.face is not None
|
|
text_image = face.face.copy()
|
|
texts = [f"pitch: {face.pose.pitch:.2f}",
|
|
f"yaw: {face.pose.yaw:.2f}",
|
|
f"roll: {face.pose.roll: .2f}",
|
|
f"distance: {face.average_distance:.2f}"]
|
|
colors = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 255, 255)]
|
|
text_sizes = [cv2.getTextSize(text, self._font, self._font_scale, 1)[0] for text in texts]
|
|
|
|
final_y = face.size - text_sizes[-1][1]
|
|
pos_y = [(size[1] + self._font_pad) * (idx + 1)
|
|
for idx, size in enumerate(text_sizes)][:-1] + [final_y]
|
|
pos_x = self._font_pad
|
|
|
|
for idx, text in enumerate(texts):
|
|
self._border_text(text_image, text, colors[idx], (pos_x, pos_y[idx]))
|
|
|
|
# Apply text to face
|
|
cv2.addWeighted(text_image, 0.75, face.face, 0.25, 0, face.face)
|
|
|
|
def process(self, extract_media: ExtractMedia) -> None:
|
|
""" Draw landmarks on a face.
|
|
|
|
Parameters
|
|
----------
|
|
extract_media: :class:`~plugins.extract.pipeline.ExtractMedia`
|
|
The :class:`~plugins.extract.pipeline.ExtractMedia` object that contains the faces to
|
|
draw the landmarks on to
|
|
"""
|
|
frame = os.path.splitext(os.path.basename(extract_media.filename))[0]
|
|
for idx, face in enumerate(extract_media.detected_faces):
|
|
if not self._face_size:
|
|
self._face_size = get_centered_size(face.aligned.centering,
|
|
"face",
|
|
face.aligned.size)
|
|
logger.debug("set face size: %s", self._face_size)
|
|
if not self._legacy_size:
|
|
self._legacy_size = get_centered_size(face.aligned.centering,
|
|
"legacy",
|
|
face.aligned.size)
|
|
logger.debug("set legacy size: %s", self._legacy_size)
|
|
if not self._font_scale:
|
|
self._initialize_font(face.aligned.size)
|
|
|
|
logger.trace("Drawing Landmarks. Frame: '%s'. Face: %s", # type:ignore[attr-defined]
|
|
frame, idx)
|
|
# Landmarks
|
|
for (pos_x, pos_y) in face.aligned.landmarks.astype("int32"):
|
|
cv2.circle(face.aligned.face, (pos_x, pos_y), 1, (0, 255, 255), -1)
|
|
# Pose
|
|
center = (face.aligned.size // 2, face.aligned.size // 2)
|
|
points = (face.aligned.pose.xyz_2d * face.aligned.size).astype("int32")
|
|
cv2.line(face.aligned.face, center, tuple(points[1]), (0, 255, 0), 1)
|
|
cv2.line(face.aligned.face, center, tuple(points[0]), (255, 0, 0), 1)
|
|
cv2.line(face.aligned.face, center, tuple(points[2]), (0, 0, 255), 1)
|
|
# Face centering
|
|
self._annotate_face_box(face.aligned)
|
|
# Legacy centering
|
|
roi = face.aligned.get_cropped_roi(face.aligned.size, self._legacy_size, "legacy")
|
|
cv2.rectangle(face.aligned.face, tuple(roi[:2]), tuple(roi[2:]), (0, 0, 255), 1)
|
|
self._print_stats(face.aligned)
|