1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/plugins/train/model/realface.py
2024-04-03 14:03:54 +01:00

192 lines
8.2 KiB
Python

#!/usr/bin/env python3
""" RealFaceRC1, codenamed 'Pegasus'
Based on the original https://www.reddit.com/r/deepfakes/
code sample + contributions
Major thanks goes to BryanLyon as it vastly powered by his ideas and insights.
Without him it would not be possible to come up with the model.
Additional thanks: Birb - source of inspiration, great Encoder ideas
Kvrooman - additional counseling on auto-encoders and practical advice
"""
import logging
import sys
# Ignore linting errors from Tensorflow's thoroughly broken import system
from tensorflow.keras.initializers import RandomNormal # pylint:disable=import-error
from tensorflow.keras.layers import Dense, Flatten, Input, LeakyReLU, Reshape # noqa:E501 # pylint:disable=import-error
from tensorflow.keras.models import Model as KModel # pylint:disable=import-error
from lib.model.nn_blocks import Conv2DOutput, Conv2DBlock, ResidualBlock, UpscaleBlock
from ._base import ModelBase
logger = logging.getLogger(__name__)
class Model(ModelBase):
""" RealFace(tm) Faceswap Model """
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.input_shape = (self.config["input_size"], self.config["input_size"], 3)
self.check_input_output()
self.dense_width, self.upscalers_no = self.get_dense_width_upscalers_numbers()
self.kernel_initializer = RandomNormal(0, 0.02)
@property
def downscalers_no(self):
""" Number of downscale blocks. Don't change! """
return 4
@property
def _downscale_ratio(self):
""" Downscale Ratio """
return 2**self.downscalers_no
@property
def dense_filters(self):
""" Dense Filters. Don't change! """
return (int(1024 - (self.dense_width - 4) * 64) // 16) * 16
def check_input_output(self):
""" Confirm valid input and output sized have been provided """
if not 64 <= self.config["input_size"] <= 128 or self.config["input_size"] % 16 != 0:
logger.error("Config error: input_size must be between 64 and 128 and be divisible by "
"16.")
sys.exit(1)
if not 64 <= self.config["output_size"] <= 256 or self.config["output_size"] % 32 != 0:
logger.error("Config error: output_size must be between 64 and 256 and be divisible "
"by 32.")
sys.exit(1)
logger.debug("Input and output sizes are valid")
def get_dense_width_upscalers_numbers(self):
""" Return the dense width and number of upscale blocks """
output_size = self.config["output_size"]
sides = [(output_size // 2**n, n) for n in [4, 5] if (output_size // 2**n) < 10]
closest = min([x * self._downscale_ratio for x, _ in sides],
key=lambda x: abs(x - self.config["input_size"]))
dense_width, upscalers_no = [(s, n) for s, n in sides
if s * self._downscale_ratio == closest][0]
logger.debug("dense_width: %s, upscalers_no: %s", dense_width, upscalers_no)
return dense_width, upscalers_no
def build_model(self, inputs):
""" Build the RealFace model. """
encoder = self.encoder()
encoder_a = encoder(inputs[0])
encoder_b = encoder(inputs[1])
outputs = [self.decoder_a()(encoder_a), self.decoder_b()(encoder_b)]
autoencoder = KModel(inputs, outputs, name=self.model_name)
return autoencoder
def encoder(self):
""" RealFace Encoder Network """
input_ = Input(shape=self.input_shape)
var_x = input_
encoder_complexity = self.config["complexity_encoder"]
for idx in range(self.downscalers_no - 1):
var_x = Conv2DBlock(encoder_complexity * 2**idx, activation=None)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(encoder_complexity * 2**idx, use_bias=True)(var_x)
var_x = ResidualBlock(encoder_complexity * 2**idx, use_bias=True)(var_x)
var_x = Conv2DBlock(encoder_complexity * 2**(idx + 1), activation="leakyrelu")(var_x)
return KModel(input_, var_x, name="encoder")
def decoder_b(self):
""" RealFace Decoder Network """
input_filters = self.config["complexity_encoder"] * 2**(self.downscalers_no-1)
input_width = self.config["input_size"] // self._downscale_ratio
input_ = Input(shape=(input_width, input_width, input_filters))
var_xy = input_
var_xy = Dense(self.config["dense_nodes"])(Flatten()(var_xy))
var_xy = Dense(self.dense_width * self.dense_width * self.dense_filters)(var_xy)
var_xy = Reshape((self.dense_width, self.dense_width, self.dense_filters))(var_xy)
var_xy = UpscaleBlock(self.dense_filters, activation=None)(var_xy)
var_x = var_xy
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(self.dense_filters, use_bias=False)(var_x)
decoder_b_complexity = self.config["complexity_decoder"]
for idx in range(self.upscalers_no - 2):
var_x = UpscaleBlock(decoder_b_complexity // 2**idx, activation=None)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(decoder_b_complexity // 2**idx, use_bias=False)(var_x)
var_x = ResidualBlock(decoder_b_complexity // 2**idx, use_bias=True)(var_x)
var_x = UpscaleBlock(decoder_b_complexity // 2**(idx + 1), activation="leakyrelu")(var_x)
var_x = Conv2DOutput(3, 5, name="face_out_b")(var_x)
outputs = [var_x]
if self.config.get("learn_mask", False):
var_y = var_xy
var_y = LeakyReLU(alpha=0.1)(var_y)
mask_b_complexity = 384
for idx in range(self.upscalers_no-2):
var_y = UpscaleBlock(mask_b_complexity // 2**idx, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(mask_b_complexity // 2**(idx + 1), activation="leakyrelu")(var_y)
var_y = Conv2DOutput(1, 5, name="mask_out_b")(var_y)
outputs += [var_y]
return KModel(input_, outputs=outputs, name="decoder_b")
def decoder_a(self):
""" RealFace Decoder (A) Network """
input_filters = self.config["complexity_encoder"] * 2**(self.downscalers_no-1)
input_width = self.config["input_size"] // self._downscale_ratio
input_ = Input(shape=(input_width, input_width, input_filters))
var_xy = input_
dense_nodes = int(self.config["dense_nodes"]/1.5)
dense_filters = int(self.dense_filters/1.5)
var_xy = Dense(dense_nodes)(Flatten()(var_xy))
var_xy = Dense(self.dense_width * self.dense_width * dense_filters)(var_xy)
var_xy = Reshape((self.dense_width, self.dense_width, dense_filters))(var_xy)
var_xy = UpscaleBlock(dense_filters, activation=None)(var_xy)
var_x = var_xy
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(dense_filters, use_bias=False)(var_x)
decoder_a_complexity = int(self.config["complexity_decoder"] / 1.5)
for idx in range(self.upscalers_no-2):
var_x = UpscaleBlock(decoder_a_complexity // 2**idx, activation="leakyrelu")(var_x)
var_x = UpscaleBlock(decoder_a_complexity // 2**(idx + 1), activation="leakyrelu")(var_x)
var_x = Conv2DOutput(3, 5, name="face_out_a")(var_x)
outputs = [var_x]
if self.config.get("learn_mask", False):
var_y = var_xy
var_y = LeakyReLU(alpha=0.1)(var_y)
mask_a_complexity = 384
for idx in range(self.upscalers_no-2):
var_y = UpscaleBlock(mask_a_complexity // 2**idx, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(mask_a_complexity // 2**(idx + 1), activation="leakyrelu")(var_y)
var_y = Conv2DOutput(1, 5, name="mask_out_a")(var_y)
outputs += [var_y]
return KModel(input_, outputs=outputs, name="decoder_a")
def _legacy_mapping(self):
""" The mapping of legacy separate model names to single model names """
return {f"{self.name}_encoder.h5": "encoder",
f"{self.name}_decoder_A.h5": "decoder_a",
f"{self.name}_decoder_B.h5": "decoder_b"}