1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/plugins/train/model/dfaker.py
2024-04-03 14:03:54 +01:00

62 lines
2.8 KiB
Python

#!/usr/bin/env python3
""" DFaker Model
Based on the dfaker model: https://github.com/dfaker """
import logging
import sys
# Ignore linting errors from Tensorflow's thoroughly broken import system
from tensorflow.keras.initializers import RandomNormal # pylint:disable=import-error
from tensorflow.keras.layers import Input, LeakyReLU # pylint:disable=import-error
from tensorflow.keras.models import Model as KModel # pylint:disable=import-error
from lib.model.nn_blocks import Conv2DOutput, UpscaleBlock, ResidualBlock
from .original import Model as OriginalModel
logger = logging.getLogger(__name__)
class Model(OriginalModel):
""" Dfaker Model """
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._output_size = self.config["output_size"]
if self._output_size not in (128, 256):
logger.error("Dfaker output shape should be 128 or 256 px")
sys.exit(1)
self.input_shape = (self._output_size // 2, self._output_size // 2, 3)
self.encoder_dim = 1024
self.kernel_initializer = RandomNormal(0, 0.02)
def decoder(self, side):
""" Decoder Network """
input_ = Input(shape=(8, 8, 512))
var_x = input_
if self._output_size == 256:
var_x = UpscaleBlock(1024, activation=None)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(1024, kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(512, activation=None)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(512, kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(256, activation=None)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(256, kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(128, activation=None)(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
var_x = ResidualBlock(128, kernel_initializer=self.kernel_initializer)(var_x)
var_x = UpscaleBlock(64, activation="leakyrelu")(var_x)
var_x = Conv2DOutput(3, 5, name=f"face_out_{side}")(var_x)
outputs = [var_x]
if self.config.get("learn_mask", False):
var_y = input_
if self._output_size == 256:
var_y = UpscaleBlock(1024, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(512, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(256, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(128, activation="leakyrelu")(var_y)
var_y = UpscaleBlock(64, activation="leakyrelu")(var_y)
var_y = Conv2DOutput(1, 5, name=f"mask_out_{side}")(var_y)
outputs.append(var_y)
return KModel([input_], outputs=outputs, name=f"decoder_{side}")