1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/lib/vgg_face.py
2024-04-03 14:03:54 +01:00

117 lines
4.9 KiB
Python

#!/usr/bin python3
""" VGG_Face inference using OpenCV-DNN
Model from: https://www.robots.ox.ac.uk/~vgg/software/vgg_face/
Licensed under Creative Commons Attribution License.
https://creativecommons.org/licenses/by-nc/4.0/
"""
import logging
import cv2
import numpy as np
from fastcluster import linkage
from lib.utils import GetModel
logger = logging.getLogger(__name__)
class VGGFace():
""" VGG Face feature extraction.
Input images should be in BGR Order """
def __init__(self, backend="CPU"):
logger.debug("Initializing %s: (backend: %s)", self.__class__.__name__, backend)
git_model_id = 7
model_filename = ["vgg_face_v1.caffemodel", "vgg_face_v1.prototxt"]
self.input_size = 224
# Average image provided in http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
self.average_img = [129.1863, 104.7624, 93.5940]
self.model = self.get_model(git_model_id, model_filename, backend)
logger.debug("Initialized %s", self.__class__.__name__)
# <<< GET MODEL >>> #
def get_model(self, git_model_id, model_filename, backend):
""" Check if model is available, if not, download and unzip it """
model = GetModel(model_filename, git_model_id).model_path
model = cv2.dnn.readNetFromCaffe(model[1], model[0])
model.setPreferableTarget(self.get_backend(backend))
return model
@staticmethod
def get_backend(backend):
""" Return the cv2 DNN backend """
if backend == "OPENCL":
logger.info("Using OpenCL backend. If the process runs, you can safely ignore any of "
"the failure messages.")
retval = getattr(cv2.dnn, f"DNN_TARGET_{backend}")
return retval
def predict(self, face):
""" Return encodings for given image from vgg_face """
if face.shape[0] != self.input_size:
face = self.resize_face(face)
blob = cv2.dnn.blobFromImage(face[..., :3],
1.0,
(self.input_size, self.input_size),
self.average_img,
False,
False)
self.model.setInput(blob)
preds = self.model.forward("fc7")[0, :]
return preds
def resize_face(self, face):
""" Resize incoming face to model_input_size """
sizes = (self.input_size, self.input_size)
interpolation = cv2.INTER_CUBIC if face.shape[0] < self.input_size else cv2.INTER_AREA
face = cv2.resize(face, dsize=sizes, interpolation=interpolation)
return face
@staticmethod
def find_cosine_similiarity(source_face, test_face):
""" Find the cosine similarity between a source face and a test face """
var_a = np.matmul(np.transpose(source_face), test_face)
var_b = np.sum(np.multiply(source_face, source_face))
var_c = np.sum(np.multiply(test_face, test_face))
return 1 - (var_a / (np.sqrt(var_b) * np.sqrt(var_c)))
def sorted_similarity(self, predictions, method="ward"):
""" Sort a matrix of predictions by similarity Adapted from:
https://gmarti.gitlab.io/ml/2017/09/07/how-to-sort-distance-matrix.html
input:
- predictions is a stacked matrix of vgg_face predictions shape: (x, 4096)
- method = ["ward","single","average","complete"]
output:
- result_order is a list of indices with the order implied by the hierarhical tree
sorted_similarity transforms a distance matrix into a sorted distance matrix according to
the order implied by the hierarchical tree (dendrogram)
"""
logger.info("Sorting face distances. Depending on your dataset this may take some time...")
num_predictions = predictions.shape[0]
result_linkage = linkage(predictions, method=method, preserve_input=False)
result_order = self.seriation(result_linkage,
num_predictions,
num_predictions + num_predictions - 2)
return result_order
def seriation(self, tree, points, current_index):
""" Seriation method for sorted similarity
input:
- tree is a hierarchical tree (dendrogram)
- points is the number of points given to the clustering process
- current_index is the position in the tree for the recursive traversal
output:
- order implied by the hierarchical tree
seriation computes the order implied by a hierarchical tree (dendrogram)
"""
if current_index < points:
return [current_index]
left = int(tree[current_index-points, 0])
right = int(tree[current_index-points, 1])
return self.seriation(tree, points, left) + self.seriation(tree, points, right)