1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/lib/model/nn_blocks.py
2024-04-03 14:03:54 +01:00

817 lines
35 KiB
Python

#!/usr/bin/env python3
""" Neural Network Blocks for faceswap.py. """
from __future__ import annotations
import logging
import typing as T
# Ignore linting errors from Tensorflow's thoroughly broken import system
from tensorflow.keras.layers import ( # pylint:disable=import-error
Activation, Add, BatchNormalization, Concatenate, Conv2D as KConv2D, Conv2DTranspose,
DepthwiseConv2D as KDepthwiseConv2d, LeakyReLU, PReLU, SeparableConv2D, UpSampling2D)
from tensorflow.keras.initializers import he_uniform, VarianceScaling # noqa:E501 # pylint:disable=import-error
from .initializers import ICNR, ConvolutionAware
from .layers import PixelShuffler, ReflectionPadding2D, Swish, KResizeImages
from .normalization import InstanceNormalization
if T.TYPE_CHECKING:
from tensorflow import keras
from tensorflow import Tensor
logger = logging.getLogger(__name__)
_CONFIG: dict = {}
_NAMES: dict[str, int] = {}
def set_config(configuration: dict) -> None:
""" Set the global configuration parameters from the user's config file.
These options are used when creating layers for new models.
Parameters
----------
configuration: dict
The configuration options that exist in the training configuration files that pertain
specifically to Custom Faceswap Layers. The keys should be: `icnr_init`, `conv_aware_init`
and 'reflect_padding'
"""
global _CONFIG # pylint:disable=global-statement
_CONFIG = configuration
logger.debug("Set NNBlock configuration to: %s", _CONFIG)
def _get_name(name: str) -> str:
""" Return unique layer name for requested block.
As blocks can be used multiple times, auto appends an integer to the end of the requested
name to keep all block names unique
Parameters
----------
name: str
The requested name for the layer
Returns
-------
str
The unique name for this layer
"""
global _NAMES # pylint:disable=global-statement,global-variable-not-assigned
_NAMES[name] = _NAMES.setdefault(name, -1) + 1
name = f"{name}_{_NAMES[name]}"
logger.debug("Generating block name: %s", name)
return name
# << CONVOLUTIONS >>
def _get_default_initializer(
initializer: keras.initializers.Initializer) -> keras.initializers.Initializer:
""" Returns a default initializer of Convolutional Aware or he_uniform for convolutional
layers.
Parameters
----------
initializer: :class:`keras.initializers.Initializer` or None
The initializer that has been passed into the model. If this value is ``None`` then a
default initializer will be set to 'he_uniform'. If Convolutional Aware initialization
has been enabled, then any passed through initializer will be replaced with the
Convolutional Aware initializer.
Returns
-------
:class:`keras.initializers.Initializer`
The kernel initializer to use for this convolutional layer. Either the original given
initializer, he_uniform or convolutional aware (if selected in config options)
"""
if _CONFIG["conv_aware_init"]:
retval = ConvolutionAware()
elif initializer is None:
retval = he_uniform()
else:
retval = initializer
logger.debug("Using model supplied initializer: %s", retval)
logger.debug("Set default kernel_initializer: (original: %s current: %s)", initializer, retval)
return retval
class Conv2D(KConv2D): # pylint:disable=too-few-public-methods, too-many-ancestors
""" A standard Keras Convolution 2D layer with parameters updated to be more appropriate for
Faceswap architecture.
Parameters are the same, with the same defaults, as a standard :class:`keras.layers.Conv2D`
except where listed below. The default initializer is updated to `he_uniform` or `convolutional
aware` based on user configuration settings.
Parameters
----------
padding: str, optional
One of `"valid"` or `"same"` (case-insensitive). Default: `"same"`. Note that `"same"` is
slightly inconsistent across backends with `strides` != 1, as described
`here <https://github.com/keras-team/keras/pull/9473#issuecomment-372166860/>`_.
is_upscale: `bool`, optional
``True`` if the convolution is being called from an upscale layer. This causes the instance
to check the user configuration options to see if ICNR initialization has been selected and
should be applied. This should only be passed in as ``True`` from :class:`UpscaleBlock`
layers. Default: ``False``
"""
def __init__(self, *args, padding: str = "same", is_upscale: bool = False, **kwargs) -> None:
if kwargs.get("name", None) is None:
filters = kwargs["filters"] if "filters" in kwargs else args[0]
kwargs["name"] = _get_name(f"conv2d_{filters}")
initializer = _get_default_initializer(kwargs.pop("kernel_initializer", None))
if is_upscale and _CONFIG["icnr_init"]:
initializer = ICNR(initializer=initializer)
logger.debug("Using ICNR Initializer: %s", initializer)
super().__init__(*args, padding=padding, kernel_initializer=initializer, **kwargs)
class DepthwiseConv2D(KDepthwiseConv2d): # noqa,pylint:disable=too-few-public-methods, too-many-ancestors
""" A standard Keras Depthwise Convolution 2D layer with parameters updated to be more
appropriate for Faceswap architecture.
Parameters are the same, with the same defaults, as a standard
:class:`keras.layers.DepthwiseConv2D` except where listed below. The default initializer is
updated to `he_uniform` or `convolutional aware` based on user configuration settings.
Parameters
----------
padding: str, optional
One of `"valid"` or `"same"` (case-insensitive). Default: `"same"`. Note that `"same"` is
slightly inconsistent across backends with `strides` != 1, as described
`here <https://github.com/keras-team/keras/pull/9473#issuecomment-372166860/>`_.
is_upscale: `bool`, optional
``True`` if the convolution is being called from an upscale layer. This causes the instance
to check the user configuration options to see if ICNR initialization has been selected and
should be applied. This should only be passed in as ``True`` from :class:`UpscaleBlock`
layers. Default: ``False``
"""
def __init__(self, *args, padding: str = "same", is_upscale: bool = False, **kwargs) -> None:
if kwargs.get("name", None) is None:
kwargs["name"] = _get_name("dwconv2d")
initializer = _get_default_initializer(kwargs.pop("depthwise_initializer", None))
if is_upscale and _CONFIG["icnr_init"]:
initializer = ICNR(initializer=initializer)
logger.debug("Using ICNR Initializer: %s", initializer)
super().__init__(*args, padding=padding, depthwise_initializer=initializer, **kwargs)
class Conv2DOutput(): # pylint:disable=too-few-public-methods
""" A Convolution 2D layer that separates out the activation layer to explicitly set the data
type on the activation to float 32 to fully support mixed precision training.
The Convolution 2D layer uses default parameters to be more appropriate for Faceswap
architecture.
Parameters are the same, with the same defaults, as a standard :class:`keras.layers.Conv2D`
except where listed below. The default initializer is updated to he_uniform or convolutional
aware based on user config settings.
Parameters
----------
filters: int
The dimensionality of the output space (i.e. the number of output filters in the
convolution)
kernel_size: int or tuple/list of 2 ints
The height and width of the 2D convolution window. Can be a single integer to specify the
same value for all spatial dimensions.
activation: str, optional
The activation function to apply to the output. Default: `"sigmoid"`
padding: str, optional
One of `"valid"` or `"same"` (case-insensitive). Default: `"same"`. Note that `"same"` is
slightly inconsistent across backends with `strides` != 1, as described
`here <https://github.com/keras-team/keras/pull/9473#issuecomment-372166860/>`_.
kwargs: dict
Any additional Keras standard layer keyword arguments to pass to the Convolutional 2D layer
"""
def __init__(self,
filters: int,
kernel_size: int | tuple[int],
activation: str = "sigmoid",
padding: str = "same", **kwargs) -> None:
self._name = _get_name(kwargs.pop("name")) if "name" in kwargs else _get_name(
f"conv_output_{filters}")
self._filters = filters
self._kernel_size = kernel_size
self._activation = activation
self._padding = padding
self._kwargs = kwargs
def __call__(self, inputs: Tensor) -> Tensor:
""" Call the Faceswap Convolutional Output Layer.
Parameters
----------
inputs: Tensor
The input to the layer
Returns
-------
Tensor
The output tensor from the Convolution 2D Layer
"""
var_x = Conv2D(self._filters,
self._kernel_size,
padding=self._padding,
name=f"{self._name}_conv2d",
**self._kwargs)(inputs)
var_x = Activation(self._activation, dtype="float32", name=self._name)(var_x)
return var_x
class Conv2DBlock(): # pylint:disable=too-few-public-methods
""" A standard Convolution 2D layer which applies user specified configuration to the
layer.
Adds reflection padding if it has been selected by the user, and other post-processing
if requested by the plugin.
Adds instance normalization if requested. Adds a LeakyReLU if a residual block follows.
Parameters
----------
filters: int
The dimensionality of the output space (i.e. the number of output filters in the
convolution)
kernel_size: int, optional
An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial
dimensions. NB: If `use_depthwise` is ``True`` then a value must still be provided here,
but it will be ignored. Default: 5
strides: tuple or int, optional
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the
height and width. Can be a single integer to specify the same value for all spatial
dimensions. Default: `2`
padding: ["valid", "same"], optional
The padding to use. NB: If reflect padding has been selected in the user configuration
options, then this argument will be ignored in favor of reflect padding. Default: `"same"`
normalization: str or ``None``, optional
Normalization to apply after the Convolution Layer. Select one of "batch" or "instance".
Set to ``None`` to not apply normalization. Default: ``None``
activation: str or ``None``, optional
The activation function to use. This is applied at the end of the convolution block. Select
one of `"leakyrelu"`, `"prelu"` or `"swish"`. Set to ``None`` to not apply an activation
function. Default: `"leakyrelu"`
use_depthwise: bool, optional
Set to ``True`` to use a Depthwise Convolution 2D layer rather than a standard Convolution
2D layer. Default: ``False``
relu_alpha: float
The alpha to use for LeakyRelu Activation. Default=`0.1`
kwargs: dict
Any additional Keras standard layer keyword arguments to pass to the Convolutional 2D layer
"""
def __init__(self,
filters: int,
kernel_size: int | tuple[int, int] = 5,
strides: int | tuple[int, int] = 2,
padding: str = "same",
normalization: str | None = None,
activation: str | None = "leakyrelu",
use_depthwise: bool = False,
relu_alpha: float = 0.1,
**kwargs) -> None:
self._name = kwargs.pop("name") if "name" in kwargs else _get_name(f"conv_{filters}")
logger.debug("name: %s, filters: %s, kernel_size: %s, strides: %s, padding: %s, "
"normalization: %s, activation: %s, use_depthwise: %s, kwargs: %s)",
self._name, filters, kernel_size, strides, padding, normalization,
activation, use_depthwise, kwargs)
self._use_reflect_padding = _CONFIG["reflect_padding"]
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
self._args = (kernel_size, ) if use_depthwise else (filters, kernel_size)
self._strides = (strides, strides) if isinstance(strides, int) else strides
self._padding = "valid" if self._use_reflect_padding else padding
self._kwargs = kwargs
self._normalization = None if not normalization else normalization.lower()
self._activation = None if not activation else activation.lower()
self._use_depthwise = use_depthwise
self._relu_alpha = relu_alpha
self._assert_arguments()
def _assert_arguments(self) -> None:
""" Validate the given arguments. """
assert self._normalization in ("batch", "instance", None), (
"normalization should be 'batch', 'instance' or None")
assert self._activation in ("leakyrelu", "swish", "prelu", None), (
"activation should be 'leakyrelu', 'prelu', 'swish' or None")
def __call__(self, inputs: Tensor) -> Tensor:
""" Call the Faceswap Convolutional Layer.
Parameters
----------
inputs: Tensor
The input to the layer
Returns
-------
Tensor
The output tensor from the Convolution 2D Layer
"""
if self._use_reflect_padding:
inputs = ReflectionPadding2D(stride=self._strides[0],
kernel_size=self._args[-1][0], # type:ignore[index]
name=f"{self._name}_reflectionpadding2d")(inputs)
conv: keras.layers.Layer = DepthwiseConv2D if self._use_depthwise else Conv2D
var_x = conv(*self._args,
strides=self._strides,
padding=self._padding,
name=f"{self._name}_{'dw' if self._use_depthwise else ''}conv2d",
**self._kwargs)(inputs)
# normalization
if self._normalization == "instance":
var_x = InstanceNormalization(name=f"{self._name}_instancenorm")(var_x)
if self._normalization == "batch":
var_x = BatchNormalization(axis=3, name=f"{self._name}_batchnorm")(var_x)
# activation
if self._activation == "leakyrelu":
var_x = LeakyReLU(self._relu_alpha, name=f"{self._name}_leakyrelu")(var_x)
if self._activation == "swish":
var_x = Swish(name=f"{self._name}_swish")(var_x)
if self._activation == "prelu":
var_x = PReLU(name=f"{self._name}_prelu")(var_x)
return var_x
class SeparableConv2DBlock(): # pylint:disable=too-few-public-methods
""" Seperable Convolution Block.
Parameters
----------
filters: int
The dimensionality of the output space (i.e. the number of output filters in the
convolution)
kernel_size: int, optional
An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial
dimensions. Default: 5
strides: tuple or int, optional
An integer or tuple/list of 2 integers, specifying the strides of the convolution along
the height and width. Can be a single integer to specify the same value for all spatial
dimensions. Default: `2`
kwargs: dict
Any additional Keras standard layer keyword arguments to pass to the Separable
Convolutional 2D layer
"""
def __init__(self,
filters: int,
kernel_size: int | tuple[int, int] = 5,
strides: int | tuple[int, int] = 2, **kwargs) -> None:
self._name = _get_name(f"separableconv2d_{filters}")
logger.debug("name: %s, filters: %s, kernel_size: %s, strides: %s, kwargs: %s)",
self._name, filters, kernel_size, strides, kwargs)
self._filters = filters
self._kernel_size = kernel_size
self._strides = strides
initializer = _get_default_initializer(kwargs.pop("kernel_initializer", None))
kwargs["kernel_initializer"] = initializer
self._kwargs = kwargs
def __call__(self, inputs: Tensor) -> Tensor:
""" Call the Faceswap Separable Convolutional 2D Block.
Parameters
----------
inputs: Tensor
The input to the layer
Returns
-------
Tensor
The output tensor from the Upscale Layer
"""
var_x = SeparableConv2D(self._filters,
kernel_size=self._kernel_size,
strides=self._strides,
padding="same",
name=f"{self._name}_seperableconv2d",
**self._kwargs)(inputs)
var_x = Activation("relu", name=f"{self._name}_relu")(var_x)
return var_x
# << UPSCALING >>
class UpscaleBlock(): # pylint:disable=too-few-public-methods
""" An upscale layer for sub-pixel up-scaling.
Adds reflection padding if it has been selected by the user, and other post-processing
if requested by the plugin.
Parameters
----------
filters: int
The dimensionality of the output space (i.e. the number of output filters in the
convolution)
kernel_size: int, optional
An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial
dimensions. Default: 3
padding: ["valid", "same"], optional
The padding to use. NB: If reflect padding has been selected in the user configuration
options, then this argument will be ignored in favor of reflect padding. Default: `"same"`
scale_factor: int, optional
The amount to upscale the image. Default: `2`
normalization: str or ``None``, optional
Normalization to apply after the Convolution Layer. Select one of "batch" or "instance".
Set to ``None`` to not apply normalization. Default: ``None``
activation: str or ``None``, optional
The activation function to use. This is applied at the end of the convolution block. Select
one of `"leakyrelu"`, `"prelu"` or `"swish"`. Set to ``None`` to not apply an activation
function. Default: `"leakyrelu"`
kwargs: dict
Any additional Keras standard layer keyword arguments to pass to the Convolutional 2D layer
"""
def __init__(self,
filters: int,
kernel_size: int | tuple[int, int] = 3,
padding: str = "same",
scale_factor: int = 2,
normalization: str | None = None,
activation: str | None = "leakyrelu",
**kwargs) -> None:
self._name = _get_name(f"upscale_{filters}")
logger.debug("name: %s. filters: %s, kernel_size: %s, padding: %s, scale_factor: %s, "
"normalization: %s, activation: %s, kwargs: %s)",
self._name, filters, kernel_size, padding, scale_factor, normalization,
activation, kwargs)
self._filters = filters
self._kernel_size = kernel_size
self._padding = padding
self._scale_factor = scale_factor
self._normalization = normalization
self._activation = activation
self._kwargs = kwargs
def __call__(self, inputs: Tensor) -> Tensor:
""" Call the Faceswap Convolutional Layer.
Parameters
----------
inputs: Tensor
The input to the layer
Returns
-------
Tensor
The output tensor from the Upscale Layer
"""
var_x = Conv2DBlock(self._filters * self._scale_factor * self._scale_factor,
self._kernel_size,
strides=(1, 1),
padding=self._padding,
normalization=self._normalization,
activation=self._activation,
name=f"{self._name}_conv2d",
is_upscale=True,
**self._kwargs)(inputs)
var_x = PixelShuffler(name=f"{self._name}_pixelshuffler",
size=self._scale_factor)(var_x)
return var_x
class Upscale2xBlock(): # pylint:disable=too-few-public-methods
""" Custom hybrid upscale layer for sub-pixel up-scaling.
Most of up-scaling is approximating lighting gradients which can be accurately achieved
using linear fitting. This layer attempts to improve memory consumption by splitting
with bilinear and convolutional layers so that the sub-pixel update will get details
whilst the bilinear filter will get lighting.
Adds reflection padding if it has been selected by the user, and other post-processing
if requested by the plugin.
Parameters
----------
filters: int
The dimensionality of the output space (i.e. the number of output filters in the
convolution)
kernel_size: int, optional
An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial
dimensions. Default: 3
padding: ["valid", "same"], optional
The padding to use. Default: `"same"`
activation: str or ``None``, optional
The activation function to use. This is applied at the end of the convolution block. Select
one of `"leakyrelu"`, `"prelu"` or `"swish"`. Set to ``None`` to not apply an activation
function. Default: `"leakyrelu"`
interpolation: ["nearest", "bilinear"], optional
Interpolation to use for up-sampling. Default: `"bilinear"`
scale_factor: int, optional
The amount to upscale the image. Default: `2`
sr_ratio: float, optional
The proportion of super resolution (pixel shuffler) filters to use. Non-fast mode only.
Default: `0.5`
fast: bool, optional
Use a faster up-scaling method that may appear more rugged. Default: ``False``
kwargs: dict
Any additional Keras standard layer keyword arguments to pass to the Convolutional 2D layer
"""
def __init__(self,
filters: int,
kernel_size: int | tuple[int, int] = 3,
padding: str = "same",
activation: str | None = "leakyrelu",
interpolation: str = "bilinear",
sr_ratio: float = 0.5,
scale_factor: int = 2,
fast: bool = False, **kwargs) -> None:
self._name = _get_name(f"upscale2x_{filters}_{'fast' if fast else 'hyb'}")
self._fast = fast
self._filters = filters if self._fast else filters - int(filters * sr_ratio)
self._kernel_size = kernel_size
self._padding = padding
self._interpolation = interpolation
self._activation = activation
self._scale_factor = scale_factor
self._kwargs = kwargs
def __call__(self, inputs: Tensor) -> Tensor:
""" Call the Faceswap Upscale 2x Layer.
Parameters
----------
inputs: Tensor
The input to the layer
Returns
-------
Tensor
The output tensor from the Upscale Layer
"""
var_x = inputs
if not self._fast:
var_x_sr = UpscaleBlock(self._filters,
kernel_size=self._kernel_size,
padding=self._padding,
scale_factor=self._scale_factor,
activation=self._activation,
**self._kwargs)(var_x)
if self._fast or (not self._fast and self._filters > 0):
var_x2 = Conv2D(self._filters, 3,
padding=self._padding,
is_upscale=True,
name=f"{self._name}_conv2d",
**self._kwargs)(var_x)
var_x2 = UpSampling2D(size=(self._scale_factor, self._scale_factor),
interpolation=self._interpolation,
name=f"{self._name}_upsampling2D")(var_x2)
if self._fast:
var_x1 = UpscaleBlock(self._filters,
kernel_size=self._kernel_size,
padding=self._padding,
scale_factor=self._scale_factor,
activation=self._activation,
**self._kwargs)(var_x)
var_x = Add()([var_x2, var_x1])
else:
var_x = Concatenate(name=f"{self._name}_concatenate")([var_x_sr, var_x2])
else:
var_x = var_x_sr
return var_x
class UpscaleResizeImagesBlock(): # pylint:disable=too-few-public-methods
""" Upscale block that uses the Keras Backend function resize_images to perform the up scaling
Similar in methodology to the :class:`Upscale2xBlock`
Adds reflection padding if it has been selected by the user, and other post-processing
if requested by the plugin.
Parameters
----------
filters: int
The dimensionality of the output space (i.e. the number of output filters in the
convolution)
kernel_size: int, optional
An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial
dimensions. Default: 3
padding: ["valid", "same"], optional
The padding to use. Default: `"same"`
activation: str or ``None``, optional
The activation function to use. This is applied at the end of the convolution block. Select
one of `"leakyrelu"`, `"prelu"` or `"swish"`. Set to ``None`` to not apply an activation
function. Default: `"leakyrelu"`
scale_factor: int, optional
The amount to upscale the image. Default: `2`
interpolation: ["nearest", "bilinear"], optional
Interpolation to use for up-sampling. Default: `"bilinear"`
kwargs: dict
Any additional Keras standard layer keyword arguments to pass to the Convolutional 2D layer
"""
def __init__(self,
filters: int,
kernel_size: int | tuple[int, int] = 3,
padding: str = "same",
activation: str | None = "leakyrelu",
scale_factor: int = 2,
interpolation: T.Literal["nearest", "bilinear"] = "bilinear") -> None:
self._name = _get_name(f"upscale_ri_{filters}")
self._interpolation = interpolation
self._size = scale_factor
self._filters = filters
self._kernel_size = kernel_size
self._padding = padding
self._activation = activation
def __call__(self, inputs: Tensor) -> Tensor:
""" Call the Faceswap Resize Images Layer.
Parameters
----------
inputs: Tensor
The input to the layer
Returns
-------
Tensor
The output tensor from the Upscale Layer
"""
var_x = inputs
var_x_sr = KResizeImages(size=self._size,
interpolation=self._interpolation,
name=f"{self._name}_resize")(var_x)
var_x_sr = Conv2D(self._filters, self._kernel_size,
strides=1,
padding=self._padding,
is_upscale=True,
name=f"{self._name}_conv")(var_x_sr)
var_x_us = Conv2DTranspose(self._filters, 3,
strides=2,
padding=self._padding,
name=f"{self._name}_convtrans")(var_x)
var_x = Add()([var_x_sr, var_x_us])
if self._activation == "leakyrelu":
var_x = LeakyReLU(0.2, name=f"{self._name}_leakyrelu")(var_x)
if self._activation == "swish":
var_x = Swish(name=f"{self._name}_swish")(var_x)
if self._activation == "prelu":
var_x = PReLU(name=f"{self._name}_prelu")(var_x)
return var_x
class UpscaleDNYBlock(): # pylint:disable=too-few-public-methods
""" Upscale block that implements methodology similar to the Disney Research Paper using an
upsampling2D block and 2 x convolutions
Adds reflection padding if it has been selected by the user, and other post-processing
if requested by the plugin.
References
----------
https://studios.disneyresearch.com/2020/06/29/high-resolution-neural-face-swapping-for-visual-effects/
Parameters
----------
filters: int
The dimensionality of the output space (i.e. the number of output filters in the
convolution)
kernel_size: int, optional
An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial
dimensions. Default: 3
activation: str or ``None``, optional
The activation function to use. This is applied at the end of the convolution block. Select
one of `"leakyrelu"`, `"prelu"` or `"swish"`. Set to ``None`` to not apply an activation
function. Default: `"leakyrelu"`
size: int, optional
The amount to upscale the image. Default: `2`
interpolation: ["nearest", "bilinear"], optional
Interpolation to use for up-sampling. Default: `"bilinear"`
kwargs: dict
Any additional Keras standard layer keyword arguments to pass to the Convolutional 2D
layers
"""
def __init__(self,
filters: int,
kernel_size: int | tuple[int, int] = 3,
padding: str = "same",
activation: str | None = "leakyrelu",
size: int = 2,
interpolation: str = "bilinear",
**kwargs) -> None:
self._name = _get_name(f"upscale_dny_{filters}")
self._interpolation = interpolation
self._size = size
self._filters = filters
self._kernel_size = kernel_size
self._padding = padding
self._activation = activation
self._kwargs = kwargs
def __call__(self, inputs: Tensor) -> Tensor:
var_x = UpSampling2D(size=self._size,
interpolation=self._interpolation,
name=f"{self._name}_upsample2d")(inputs)
for idx in range(2):
var_x = Conv2DBlock(self._filters,
self._kernel_size,
strides=1,
padding=self._padding,
activation=self._activation,
relu_alpha=0.2,
name=f"{self._name}_conv2d_{idx + 1}",
is_upscale=True,
**self._kwargs)(var_x)
return var_x
# << OTHER BLOCKS >>
class ResidualBlock(): # pylint:disable=too-few-public-methods
""" Residual block from dfaker.
Parameters
----------
filters: int
The dimensionality of the output space (i.e. the number of output filters in the
convolution)
kernel_size: int, optional
An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial
dimensions. Default: 3
padding: ["valid", "same"], optional
The padding to use. Default: `"same"`
kwargs: dict
Any additional Keras standard layer keyword arguments to pass to the Convolutional 2D layer
Returns
-------
tensor
The output tensor from the Upscale layer
"""
def __init__(self,
filters: int,
kernel_size: int | tuple[int, int] = 3,
padding: str = "same",
**kwargs) -> None:
self._name = _get_name(f"residual_{filters}")
logger.debug("name: %s, filters: %s, kernel_size: %s, padding: %s, kwargs: %s)",
self._name, filters, kernel_size, padding, kwargs)
self._use_reflect_padding = _CONFIG["reflect_padding"]
self._filters = filters
self._kernel_size = (kernel_size,
kernel_size) if isinstance(kernel_size, int) else kernel_size
self._padding = "valid" if self._use_reflect_padding else padding
self._kwargs = kwargs
def __call__(self, inputs: Tensor) -> Tensor:
""" Call the Faceswap Residual Block.
Parameters
----------
inputs: Tensor
The input to the layer
Returns
-------
Tensor
The output tensor from the Upscale Layer
"""
var_x = inputs
if self._use_reflect_padding:
var_x = ReflectionPadding2D(stride=1,
kernel_size=self._kernel_size[0],
name=f"{self._name}_reflectionpadding2d_0")(var_x)
var_x = Conv2D(self._filters,
kernel_size=self._kernel_size,
padding=self._padding,
name=f"{self._name}_conv2d_0",
**self._kwargs)(var_x)
var_x = LeakyReLU(alpha=0.2, name=f"{self._name}_leakyrelu_1")(var_x)
if self._use_reflect_padding:
var_x = ReflectionPadding2D(stride=1,
kernel_size=self._kernel_size[0],
name=f"{self._name}_reflectionpadding2d_1")(var_x)
kwargs = {key: val for key, val in self._kwargs.items() if key != "kernel_initializer"}
if not _CONFIG["conv_aware_init"]:
kwargs["kernel_initializer"] = VarianceScaling(scale=0.2,
mode="fan_in",
distribution="uniform")
var_x = Conv2D(self._filters,
kernel_size=self._kernel_size,
padding=self._padding,
name=f"{self._name}_conv2d_1",
**kwargs)(var_x)
var_x = Add()([var_x, inputs])
var_x = LeakyReLU(alpha=0.2, name=f"{self._name}_leakyrelu_3")(var_x)
return var_x