1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-07 10:43:27 -04:00
faceswap/lib/convert.py
2024-04-03 14:03:54 +01:00

527 lines
24 KiB
Python

#!/usr/bin/env python3
""" Converter for Faceswap """
from __future__ import annotations
import logging
import typing as T
from dataclasses import dataclass
import cv2
import numpy as np
from plugins.plugin_loader import PluginLoader
if T.TYPE_CHECKING:
from argparse import Namespace
from collections.abc import Callable
from lib.align.aligned_face import AlignedFace, CenteringType
from lib.align.detected_face import DetectedFace
from lib.config import FaceswapConfig
from lib.queue_manager import EventQueue
from scripts.convert import ConvertItem
from plugins.convert.color._base import Adjustment as ColorAdjust
from plugins.convert.color.seamless_clone import Color as SeamlessAdjust
from plugins.convert.mask.mask_blend import Mask as MaskAdjust
from plugins.convert.scaling._base import Adjustment as ScalingAdjust
logger = logging.getLogger(__name__)
@dataclass
class Adjustments:
""" Dataclass to hold the optional processing plugins
Parameters
----------
color: :class:`~plugins.color._base.Adjustment`, Optional
The selected color processing plugin. Default: `None`
mask: :class:`~plugins.mask_blend.Mask`, Optional
The selected mask processing plugin. Default: `None`
seamless: :class:`~plugins.color.seamless_clone.Color`, Optional
The selected mask processing plugin. Default: `None`
sharpening: :class:`~plugins.scaling._base.Adjustment`, Optional
The selected mask processing plugin. Default: `None`
"""
color: ColorAdjust | None = None
mask: MaskAdjust | None = None
seamless: SeamlessAdjust | None = None
sharpening: ScalingAdjust | None = None
class Converter():
""" The converter is responsible for swapping the original face(s) in a frame with the output
of a trained Faceswap model.
Parameters
----------
output_size: int
The size of the face, in pixels, that is output from the Faceswap model
coverage_ratio: float
The ratio of the training image that was used for training the Faceswap model
centering: str
The extracted face centering that the model was trained on (`"face"` or "`legacy`")
draw_transparent: bool
Whether the final output should be drawn onto a transparent layer rather than the original
frame. Only available with certain writer plugins.
pre_encode: python function
Some writer plugins support the pre-encoding of images prior to saving out. As patching is
done in multiple threads, but writing is done in a single thread, it can speed up the
process to do any pre-encoding as part of the converter process.
arguments: :class:`argparse.Namespace`
The arguments that were passed to the convert process as generated from Faceswap's command
line arguments
configfile: str, optional
Optional location of custom configuration ``ini`` file. If ``None`` then use the default
config location. Default: ``None``
"""
def __init__(self,
output_size: int,
coverage_ratio: float,
centering: CenteringType,
draw_transparent: bool,
pre_encode: Callable | None,
arguments: Namespace,
configfile: str | None = None) -> None:
logger.debug("Initializing %s: (output_size: %s, coverage_ratio: %s, centering: %s, "
"draw_transparent: %s, pre_encode: %s, arguments: %s, configfile: %s)",
self.__class__.__name__, output_size, coverage_ratio, centering,
draw_transparent, pre_encode, arguments, configfile)
self._output_size = output_size
self._coverage_ratio = coverage_ratio
self._centering = centering
self._draw_transparent = draw_transparent
self._writer_pre_encode = pre_encode
self._args = arguments
self._configfile = configfile
self._scale = arguments.output_scale / 100
self._face_scale = 1.0 - arguments.face_scale / 100.
self._adjustments = Adjustments()
self._full_frame_output: bool = arguments.writer != "patch"
self._load_plugins()
logger.debug("Initialized %s", self.__class__.__name__)
@property
def cli_arguments(self) -> Namespace:
""":class:`argparse.Namespace`: The command line arguments passed to the convert
process """
return self._args
def reinitialize(self, config: FaceswapConfig) -> None:
""" Reinitialize this :class:`Converter`.
Called as part of the :mod:`~tools.preview` tool. Resets all adjustments then loads the
plugins as specified in the given config.
Parameters
----------
config: :class:`lib.config.FaceswapConfig`
Pre-loaded :class:`lib.config.FaceswapConfig`. used over any configuration on disk.
"""
logger.debug("Reinitializing converter")
self._face_scale = 1.0 - self._args.face_scale / 100.
self._adjustments = Adjustments()
self._load_plugins(config=config, disable_logging=True)
logger.debug("Reinitialized converter")
def _load_plugins(self,
config: FaceswapConfig | None = None,
disable_logging: bool = False) -> None:
""" Load the requested adjustment plugins.
Loads the :mod:`plugins.converter` plugins that have been requested for this conversion
session.
Parameters
----------
config: :class:`lib.config.FaceswapConfig`, optional
Optional pre-loaded :class:`lib.config.FaceswapConfig`. If passed, then this will be
used over any configuration on disk. If ``None`` then it is ignored. Default: ``None``
disable_logging: bool, optional
Plugin loader outputs logging info every time a plugin is loaded. Set to ``True`` to
suppress these messages otherwise ``False``. Default: ``False``
"""
logger.debug("Loading plugins. config: %s", config)
self._adjustments.mask = PluginLoader.get_converter("mask",
"mask_blend",
disable_logging=disable_logging)(
self._args.mask_type,
self._output_size,
self._coverage_ratio,
configfile=self._configfile,
config=config)
if self._args.color_adjustment != "none" and self._args.color_adjustment is not None:
self._adjustments.color = PluginLoader.get_converter("color",
self._args.color_adjustment,
disable_logging=disable_logging)(
configfile=self._configfile,
config=config)
sharpening = PluginLoader.get_converter("scaling",
"sharpen",
disable_logging=disable_logging)(
configfile=self._configfile,
config=config)
if sharpening.config.get("method") is not None:
self._adjustments.sharpening = sharpening
logger.debug("Loaded plugins: %s", self._adjustments)
def process(self, in_queue: EventQueue, out_queue: EventQueue):
""" Main convert process.
Takes items from the in queue, runs the relevant adjustments, patches faces to final frame
and outputs patched frame to the out queue.
Parameters
----------
in_queue: :class:`~lib.queue_manager.EventQueue`
The output from :class:`scripts.convert.Predictor`. Contains detected faces from the
Faceswap model as well as the frame to be patched.
out_queue: :class:`~lib.queue_manager.EventQueue`
The queue to place patched frames into for writing by one of Faceswap's
:mod:`plugins.convert.writer` plugins.
"""
logger.debug("Starting convert process. (in_queue: %s, out_queue: %s)",
in_queue, out_queue)
logged = False
while True:
inbound: T.Literal["EOF"] | ConvertItem | list[ConvertItem] = in_queue.get()
if inbound == "EOF":
logger.debug("EOF Received")
logger.debug("Patch queue finished")
# Signal EOF to other processes in pool
logger.debug("Putting EOF back to in_queue")
in_queue.put(inbound)
break
items = inbound if isinstance(inbound, list) else [inbound]
for item in items:
logger.trace("Patch queue got: '%s'", # type: ignore[attr-defined]
item.inbound.filename)
try:
image = self._patch_image(item)
except Exception as err: # pylint: disable=broad-except
# Log error and output original frame
logger.error("Failed to convert image: '%s'. Reason: %s",
item.inbound.filename, str(err))
image = item.inbound.image
lvl = logger.trace if logged else logger.warning # type: ignore[attr-defined]
lvl("Convert error traceback:", exc_info=True)
logged = True
# UNCOMMENT THIS CODE BLOCK TO PRINT TRACEBACK ERRORS
# import sys; import traceback
# exc_info = sys.exc_info(); traceback.print_exception(*exc_info)
logger.trace("Out queue put: %s", # type: ignore[attr-defined]
item.inbound.filename)
out_queue.put((item.inbound.filename, image))
logger.debug("Completed convert process")
def _get_warp_matrix(self, matrix: np.ndarray, size: int) -> np.ndarray:
""" Obtain the final scaled warp transformation matrix based on face scaling from the
original transformation matrix
Parameters
----------
matrix: :class:`numpy.ndarray`
The transformation for patching the swapped face back onto the output frame
size: int
The size of the face patch, in pixels
Returns
-------
:class:`numpy.ndarray`
The final transformation matrix with any scaling applied
"""
if self._face_scale == 1.0:
mat = matrix
else:
mat = matrix * self._face_scale
patch_center = (size / 2, size / 2)
mat[..., 2] += (1 - self._face_scale) * np.array(patch_center)
return mat
def _patch_image(self, predicted: ConvertItem) -> np.ndarray | list[bytes]:
""" Patch a swapped face onto a frame.
Run selected adjustments and swap the faces in a frame.
Parameters
----------
predicted: :class:`~scripts.convert.ConvertItem`
The output from :class:`scripts.convert.Predictor`.
Returns
-------
:class: `numpy.ndarray` or pre-encoded image output
The final frame ready for writing by a :mod:`plugins.convert.writer` plugin.
Frame is either an array, or the pre-encoded output from the writer's pre-encode
function (if it has one)
"""
logger.trace("Patching image: '%s'", # type: ignore[attr-defined]
predicted.inbound.filename)
frame_size = (predicted.inbound.image.shape[1], predicted.inbound.image.shape[0])
new_image, background = self._get_new_image(predicted, frame_size)
if self._full_frame_output:
patched_face = self._post_warp_adjustments(background, new_image)
patched_face = self._scale_image(patched_face)
patched_face *= 255.0
patched_face = np.rint(patched_face,
out=np.empty(patched_face.shape, dtype="uint8"),
casting='unsafe')
else:
patched_face = new_image
if self._writer_pre_encode is None:
retval: np.ndarray | list[bytes] = patched_face
else:
kwargs: dict[str, T.Any] = {}
if self.cli_arguments.writer == "patch":
kwargs["canvas_size"] = (background.shape[1], background.shape[0])
kwargs["matrices"] = np.array([self._get_warp_matrix(face.adjusted_matrix,
patched_face.shape[1])
for face in predicted.reference_faces],
dtype="float32")
retval = self._writer_pre_encode(patched_face, **kwargs)
logger.trace("Patched image: '%s'", # type: ignore[attr-defined]
predicted.inbound.filename)
return retval
def _warp_to_frame(self,
reference: AlignedFace,
face: np.ndarray,
frame: np.ndarray,
multiple_faces: bool) -> None:
""" Perform affine transformation to place a face patch onto the given frame.
Affine is done in place on the `frame` array, so this function does not return a value
Parameters
----------
reference: :class:`lib.align.AlignedFace`
The object holding the original aligned face
face: :class:`numpy.ndarray`
The swapped face patch
frame: :class:`numpy.ndarray`
The frame to affine the face onto
multiple_faces: bool
Controls the border mode to use. Uses BORDER_CONSTANT if there is only 1 face in
the image, otherwise uses the inferior BORDER_TRANSPARENT
"""
# Warp face with the mask
mat = self._get_warp_matrix(reference.adjusted_matrix, face.shape[0])
border = cv2.BORDER_TRANSPARENT if multiple_faces else cv2.BORDER_CONSTANT
cv2.warpAffine(face,
mat,
(frame.shape[1], frame.shape[0]),
frame,
flags=cv2.WARP_INVERSE_MAP | reference.interpolators[1],
borderMode=border)
def _get_new_image(self,
predicted: ConvertItem,
frame_size: tuple[int, int]) -> tuple[np.ndarray, np.ndarray]:
""" Get the new face from the predictor and apply pre-warp manipulations.
Applies any requested adjustments to the raw output of the Faceswap model
before transforming the image into the target frame.
Parameters
----------
predicted: :class:`~scripts.convert.ConvertItem`
The output from :class:`scripts.convert.Predictor`.
frame_size: tuple
The (`width`, `height`) of the final frame in pixels
Returns
-------
placeholder: :class: `numpy.ndarray`
The original frame with the swapped faces patched onto it
background: :class: `numpy.ndarray`
The original frame
"""
logger.trace("Getting: (filename: '%s', faces: %s)", # type: ignore[attr-defined]
predicted.inbound.filename, len(predicted.swapped_faces))
placeholder = np.zeros((frame_size[1], frame_size[0], 4), dtype="float32")
if self._full_frame_output:
background = predicted.inbound.image / np.array(255.0, dtype="float32")
placeholder[:, :, :3] = background
else:
faces = [] # Collect the faces into final array
background = placeholder # Used for obtaining original frame dimensions
for new_face, detected_face, reference_face in zip(predicted.swapped_faces,
predicted.inbound.detected_faces,
predicted.reference_faces):
predicted_mask = new_face[:, :, -1] if new_face.shape[2] == 4 else None
new_face = new_face[:, :, :3]
new_face = self._pre_warp_adjustments(new_face,
detected_face,
reference_face,
predicted_mask)
if self._full_frame_output:
self._warp_to_frame(reference_face,
new_face, placeholder,
len(predicted.swapped_faces) > 1)
else:
faces.append(new_face)
if not self._full_frame_output:
placeholder = np.array(faces, dtype="float32")
logger.trace("Got filename: '%s'. (placeholders: %s)", # type: ignore[attr-defined]
predicted.inbound.filename, placeholder.shape)
return placeholder, background
def _pre_warp_adjustments(self,
new_face: np.ndarray,
detected_face: DetectedFace,
reference_face: AlignedFace,
predicted_mask: np.ndarray | None) -> np.ndarray:
""" Run any requested adjustments that can be performed on the raw output from the Faceswap
model.
Any adjustments that can be performed before warping the face into the final frame are
performed here.
Parameters
----------
new_face: :class:`numpy.ndarray`
The swapped face received from the faceswap model.
detected_face: :class:`~lib.align.DetectedFace`
The detected_face object as defined in :class:`scripts.convert.Predictor`
reference_face: :class:`~lib.align.AlignedFace`
The aligned face object sized to the model output of the original face for reference
predicted_mask: :class:`numpy.ndarray` or ``None``
The predicted mask output from the Faceswap model. ``None`` if the model
did not learn a mask
Returns
-------
:class:`numpy.ndarray`
The face output from the Faceswap Model with any requested pre-warp adjustments
performed.
"""
logger.trace("new_face shape: %s, predicted_mask shape: %s", # type: ignore[attr-defined]
new_face.shape, predicted_mask.shape if predicted_mask is not None else None)
old_face = T.cast(np.ndarray, reference_face.face)[..., :3] / 255.0
new_face, raw_mask = self._get_image_mask(new_face,
detected_face,
predicted_mask,
reference_face)
if self._adjustments.color is not None:
new_face = self._adjustments.color.run(old_face, new_face, raw_mask)
if self._adjustments.seamless is not None:
new_face = self._adjustments.seamless.run(old_face, new_face, raw_mask)
logger.trace("returning: new_face shape %s", new_face.shape) # type: ignore[attr-defined]
return new_face
def _get_image_mask(self,
new_face: np.ndarray,
detected_face: DetectedFace,
predicted_mask: np.ndarray | None,
reference_face: AlignedFace) -> tuple[np.ndarray, np.ndarray]:
""" Return any selected image mask
Places the requested mask into the new face's Alpha channel.
Parameters
----------
new_face: :class:`numpy.ndarray`
The swapped face received from the faceswap model.
detected_face: :class:`~lib.DetectedFace`
The detected_face object as defined in :class:`scripts.convert.Predictor`
predicted_mask: :class:`numpy.ndarray` or ``None``
The predicted mask output from the Faceswap model. ``None`` if the model
did not learn a mask
reference_face: :class:`~lib.align.AlignedFace`
The aligned face object sized to the model output of the original face for reference
Returns
-------
:class:`numpy.ndarray`
The swapped face with the requested mask added to the Alpha channel
:class:`numpy.ndarray`
The raw mask with no erosion or blurring applied
"""
logger.trace("Getting mask. Image shape: %s", new_face.shape) # type: ignore[attr-defined]
if self._args.mask_type not in ("none", "predicted"):
mask_centering = detected_face.mask[self._args.mask_type].stored_centering
else:
mask_centering = "face" # Unused but requires a valid value
assert self._adjustments.mask is not None
mask, raw_mask = self._adjustments.mask.run(detected_face,
reference_face.pose.offset[mask_centering],
reference_face.pose.offset[self._centering],
self._centering,
predicted_mask=predicted_mask)
logger.trace("Adding mask to alpha channel") # type: ignore[attr-defined]
new_face = np.concatenate((new_face, mask), -1)
logger.trace("Got mask. Image shape: %s", new_face.shape) # type: ignore[attr-defined]
return new_face, raw_mask
def _post_warp_adjustments(self, background: np.ndarray, new_image: np.ndarray) -> np.ndarray:
""" Perform any requested adjustments to the swapped faces after they have been transformed
into the final frame.
Parameters
----------
background: :class:`numpy.ndarray`
The original frame
new_image: :class:`numpy.ndarray`
A blank frame of original frame size with the faces warped onto it
Returns
-------
:class:`numpy.ndarray`
The final merged and swapped frame with any requested post-warp adjustments applied
"""
if self._adjustments.sharpening is not None:
new_image = self._adjustments.sharpening.run(new_image)
if self._draw_transparent:
frame = new_image
else:
foreground, mask = np.split(new_image, # pylint:disable=unbalanced-tuple-unpacking
(3, ),
axis=-1)
foreground *= mask
background *= (1.0 - mask)
background += foreground
frame = background
np.clip(frame, 0.0, 1.0, out=frame)
return frame
def _scale_image(self, frame: np.ndarray) -> np.ndarray:
""" Scale the final image if requested.
If output scale has been requested in command line arguments, scale the output
otherwise return the final frame.
Parameters
----------
frame: :class:`numpy.ndarray`
The final frame with faces swapped
Returns
-------
:class:`numpy.ndarray`
The final frame scaled by the requested scaling factor
"""
if self._scale == 1:
return frame
logger.trace("source frame: %s", frame.shape) # type: ignore[attr-defined]
interp = cv2.INTER_CUBIC if self._scale > 1 else cv2.INTER_AREA
dims = (round((frame.shape[1] / 2 * self._scale) * 2),
round((frame.shape[0] / 2 * self._scale) * 2))
frame = cv2.resize(frame, dims, interpolation=interp)
logger.trace("resized frame: %s", frame.shape) # type: ignore[attr-defined]
np.clip(frame, 0.0, 1.0, out=frame)
return frame