1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/lib/vgg_face2_keras.py
2019-12-16 00:59:00 +00:00

261 lines
9.6 KiB
Python

#!/usr/bin python3
""" VGG_Face2 inference and sorting """
import logging
import sys
import os
import psutil
import cv2
import numpy as np
from fastcluster import linkage, linkage_vector
from lib.utils import GetModel, FaceswapError
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class VGGFace2():
""" VGG Face feature extraction.
Extracts feature vectors from faces in order to compare similarity.
Parameters
----------
backend: ['GPU', 'CPU']
Whether to run inference on a GPU or on the CPU
loglevel: ['INFO', 'VERBODE', 'DEBUG', 'TRACE']
The system log level
Notes
-----
Input images should be in BGR Order
Model exported from: https://github.com/WeidiXie/Keras-VGGFace2-ResNet50 which is based on:
https://www.robots.ox.ac.uk/~vgg/software/vgg_face/
Licensed under Creative Commons Attribution License.
https://creativecommons.org/licenses/by-nc/4.0/
"""
def __init__(self, backend="GPU", loglevel="INFO"):
logger.debug("Initializing %s: (backend: %s, loglevel: %s)",
self.__class__.__name__, backend, loglevel)
backend = backend.upper()
git_model_id = 10
model_filename = ["vggface2_resnet50_v2.h5"]
self.input_size = 224
# Average image provided in https://github.com/ox-vgg/vgg_face2
self.average_img = np.array([91.4953, 103.8827, 131.0912])
self.model = self._get_model(git_model_id, model_filename, backend)
logger.debug("Initialized %s", self.__class__.__name__)
# <<< GET MODEL >>> #
@staticmethod
def _get_model(git_model_id, model_filename, backend):
""" Check if model is available, if not, download and unzip it
Parameters
----------
git_model_id: int
The second digit in the github tag that identifies this model. See
https://github.com/deepfakes-models/faceswap-models for more information
model_filename: str
The name of the model to be loaded (see :class:`lib.utils.GetModel` for more
information)
backend: ['GPU', 'CPU']
Whether to run inference on a GPU or on the CPU
See Also
--------
lib.utils.GetModel: The model downloading and allocation class.
"""
root_path = os.path.abspath(os.path.dirname(sys.argv[0]))
cache_path = os.path.join(root_path, "plugins", "extract", "recognition", ".cache")
model = GetModel(model_filename, cache_path, git_model_id).model_path
if backend == "CPU":
if os.environ.get("KERAS_BACKEND", "") == "plaidml.keras.backend":
logger.info("Switching to tensorflow backend.")
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
from lib.model.layers import L2_normalize
if backend == "CPU":
with keras.backend.tf.device("/cpu:0"):
return keras.models.load_model(model, {
"L2_normalize": L2_normalize
})
else:
return keras.models.load_model(model, {
"L2_normalize": L2_normalize
})
def predict(self, face):
""" Return encodings for given image from vgg_face2.
Parameters
----------
face: numpy.ndarray
The face to be fed through the predictor. Should be in BGR channel order
Returns
-------
numpy.ndarray
The encodings for the face
"""
if face.shape[0] != self.input_size:
face = self._resize_face(face)
face = face[None, :, :, :3] - self.average_img
preds = self.model.predict(face)
return preds[0, :]
def _resize_face(self, face):
""" Resize incoming face to model_input_size.
Parameters
----------
face: numpy.ndarray
The face to be fed through the predictor. Should be in BGR channel order
Returns
-------
numpy.ndarray
The face resized to model input size
"""
sizes = (self.input_size, self.input_size)
interpolation = cv2.INTER_CUBIC if face.shape[0] < self.input_size else cv2.INTER_AREA
face = cv2.resize(face, dsize=sizes, interpolation=interpolation)
return face
@staticmethod
def find_cosine_similiarity(source_face, test_face):
""" Find the cosine similarity between two faces.
Parameters
----------
source_face: numpy.ndarray
The first face to test against :attr:`test_face`
test_face: numpy.ndarray
The second face to test against :attr:`source_face`
Returns
-------
float:
The cosine similarity between the two faces
"""
var_a = np.matmul(np.transpose(source_face), test_face)
var_b = np.sum(np.multiply(source_face, source_face))
var_c = np.sum(np.multiply(test_face, test_face))
return 1 - (var_a / (np.sqrt(var_b) * np.sqrt(var_c)))
def sorted_similarity(self, predictions, method="ward"):
""" Sort a matrix of predictions by similarity.
Transforms a distance matrix into a sorted distance matrix according to the order implied
by the hierarchical tree (dendrogram).
Parameters
----------
predictions: numpy.ndarray
A stacked matrix of vgg_face2 predictions of the shape (`N`, `D`) where `N` is the
number of observations and `D` are the number of dimensions. NB: The given
:attr:`predictions` will be overwritten to save memory. If you still require the
original values you should take a copy prior to running this method
method: ['single','centroid','median','ward']
The clustering method to use.
Returns
-------
list:
List of indices with the order implied by the hierarchical tree
"""
logger.info("Sorting face distances. Depending on your dataset this may take some time...")
num_predictions, dims = predictions.shape
kwargs = dict(method=method)
if self._use_vector_linkage(num_predictions, dims):
func = linkage_vector
else:
kwargs["preserve_input"] = False
func = linkage
result_linkage = func(predictions, **kwargs)
result_order = self._seriation(result_linkage,
num_predictions,
num_predictions + num_predictions - 2)
return result_order
@staticmethod
def _use_vector_linkage(item_count, dims):
""" Calculate the RAM that will be required to sort these images and select the appropriate
clustering method.
From fastcluster documentation:
"While the linkage method requires Θ(N:sup:`2`) memory for clustering of N points, this
[vector] method needs Θ(N D)for N points in RD, which is usually much smaller."
also:
"half the memory can be saved by specifying :attr:`preserve_input`=``False``"
To avoid under calculating we divide the memory calculation by 1.8 instead of 2
Parameters
----------
item_count: int
The number of images that are to be processed
dims: int
The number of dimensions in the vgg_face output
Returns
-------
bool:
``True`` if vector_linkage should be used. ``False`` if linkage should be used
"""
np_float = 24 # bytes size of a numpy float
divider = 1024 * 1024 # bytes to MB
free_ram = psutil.virtual_memory().available / divider
linkage_required = (((item_count ** 2) * np_float) / 1.8) / divider
vector_required = ((item_count * dims) * np_float) / divider
logger.debug("free_ram: %sMB, linkage_required: %sMB, vector_required: %sMB",
int(free_ram), int(linkage_required), int(vector_required))
if linkage_required < free_ram:
logger.verbose("Using linkage method")
retval = False
elif vector_required < free_ram:
logger.warning("Not enough RAM to perform linkage clustering. Using vector "
"clustering. This will be significantly slower. Free RAM: %sMB. "
"Required for linkage method: %sMB",
int(free_ram), int(linkage_required))
retval = True
else:
raise FaceswapError("Not enough RAM available to sort faces. Try reducing "
"the size of your dataset. Free RAM: {}MB. "
"Required RAM: {}MB".format(int(free_ram), int(vector_required)))
logger.debug(retval)
return retval
def _seriation(self, tree, points, current_index):
""" Seriation method for sorted similarity.
Seriation computes the order implied by a hierarchical tree (dendrogram).
Parameters
----------
tree: numpy.ndarray
A hierarchical tree (dendrogram)
points: int
The number of points given to the clustering process
current_index: int
The position in the tree for the recursive traversal
Returns
-------
list:
The indices in the order implied by the hierarchical tree
"""
if current_index < points:
return [current_index]
left = int(tree[current_index-points, 0])
right = int(tree[current_index-points, 1])
return self._seriation(tree, points, left) + self._seriation(tree, points, right)