1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/lib/faces_detect.py

260 lines
11 KiB
Python

#!/usr/bin python3
""" Face and landmarks detection for faceswap.py """
import logging
import numpy as np
from lib.aligner import Extract as AlignerExtract, get_align_mat, get_matrix_scaling
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class DetectedFace():
""" Detected face and landmark information """
def __init__( # pylint: disable=invalid-name
self, image=None, x=None, w=None, y=None, h=None,
landmarksXY=None):
logger.trace("Initializing %s", self.__class__.__name__)
self.image = image
self.x = x
self.w = w
self.y = y
self.h = h
self.landmarksXY = landmarksXY
self.hash = None # Hash must be set when the file is saved due to image compression
self.aligned = dict()
self.feed = dict()
self.reference = dict()
logger.trace("Initialized %s", self.__class__.__name__)
@property
def extract_ratio(self):
""" The ratio of padding to add for training images """
return 0.375
@property
def landmarks_as_xy(self):
""" Landmarks as XY """
return self.landmarksXY
def to_bounding_box_dict(self):
""" Return Bounding Box as a bounding box dixt """
retval = dict(left=self.x, top=self.y, right=self.x + self.w, bottom=self.y + self.h)
logger.trace("Returning: %s", retval)
return retval
def from_bounding_box_dict(self, bounding_box_dict, image=None):
""" Set Bounding Box from a bounding box dict """
logger.trace("Creating from bounding box dict: %s", bounding_box_dict)
if not isinstance(bounding_box_dict, dict):
raise ValueError("Supplied Bounding Box is not a dictionary.")
self.x = bounding_box_dict["left"]
self.w = bounding_box_dict["right"] - bounding_box_dict["left"]
self.y = bounding_box_dict["top"]
self.h = bounding_box_dict["bottom"] - bounding_box_dict["top"]
if image is not None and image.any():
self.image_to_face(image)
logger.trace("Created from bounding box dict: (x: %s, w: %s, y: %s. h: %s)",
self.x, self.w, self.y, self.h)
def image_to_face(self, image):
""" Crop an image around bounding box to the face
and capture it's dimensions """
logger.trace("Cropping face from image")
self.image = image[self.y: self.y + self.h,
self.x: self.x + self.w]
def to_alignment(self):
""" Convert a detected face to alignment dict """
alignment = dict()
alignment["x"] = self.x
alignment["w"] = self.w
alignment["y"] = self.y
alignment["h"] = self.h
alignment["landmarksXY"] = self.landmarksXY
alignment["hash"] = self.hash
logger.trace("Returning: %s", alignment)
return alignment
def from_alignment(self, alignment, image=None):
""" Convert a face alignment to detected face object """
logger.trace("Creating from alignment: (alignment: %s, has_image: %s)",
alignment, bool(image is not None))
self.x = alignment["x"]
self.w = alignment["w"]
self.y = alignment["y"]
self.h = alignment["h"]
self.landmarksXY = alignment["landmarksXY"]
# Manual tool does not know the final hash so default to None
self.hash = alignment.get("hash", None)
if image is not None and image.any():
self.image_to_face(image)
logger.trace("Created from alignment: (x: %s, w: %s, y: %s. h: %s, "
"landmarks: %s)",
self.x, self.w, self.y, self.h, self.landmarksXY)
# <<< Aligned Face methods and properties >>> #
def load_aligned(self, image, size=256, align_eyes=False, dtype=None):
""" No need to load aligned information for all uses of this
class, so only call this to load the information for easy
reference to aligned properties for this face """
logger.trace("Loading aligned face: (size: %s, align_eyes: %s, dtype: %s)",
size, align_eyes, dtype)
padding = int(size * self.extract_ratio) // 2
self.aligned["size"] = size
self.aligned["padding"] = padding
self.aligned["align_eyes"] = align_eyes
self.aligned["matrix"] = get_align_mat(self, size, align_eyes)
if image is None:
self.aligned["face"] = None
else:
face = AlignerExtract().transform(
image,
self.aligned["matrix"],
size,
padding)
self.aligned["face"] = face if dtype is None else face.astype(dtype)
logger.trace("Loaded aligned face: %s", {key: val
for key, val in self.aligned.items()
if key != "face"})
def padding_from_coverage(self, size, coverage_ratio):
""" Return the image padding for a face from coverage_ratio set against a
pre-padded training image """
adjusted_ratio = coverage_ratio - (1 - self.extract_ratio)
padding = round((size * adjusted_ratio) / 2)
logger.trace(padding)
return padding
def load_feed_face(self, image, size=64, coverage_ratio=0.625, dtype=None):
""" Return a face in the correct dimensions for feeding into a NN
Coverage ratio should be the ratio of the extracted image that was used for
training """
logger.trace("Loading feed face: (size: %s, coverage_ratio: %s, dtype: %s)",
size, coverage_ratio, dtype)
self.feed["size"] = size
self.feed["padding"] = self.padding_from_coverage(size, coverage_ratio)
self.feed["matrix"] = get_align_mat(self, size, should_align_eyes=False)
face = np.clip(AlignerExtract().transform(image,
self.feed["matrix"],
size,
self.feed["padding"])[:, :, :3] / 255.0,
0.0, 1.0)
self.feed["face"] = face if dtype is None else face.astype(dtype)
logger.trace("Loaded feed face. (face_shape: %s, matrix: %s)",
self.feed_face.shape, self.feed_matrix)
def load_reference_face(self, image, size=64, coverage_ratio=0.625, dtype=None):
""" Return a face in the correct dimensions for reference to the output from a NN
Coverage ratio should be the ratio of the extracted image that was used for
training """
logger.trace("Loading reference face: (size: %s, coverage_ratio: %s, dtype: %s)",
size, coverage_ratio, dtype)
self.reference["size"] = size
self.reference["padding"] = self.padding_from_coverage(size, coverage_ratio)
self.reference["matrix"] = get_align_mat(self, size, should_align_eyes=False)
face = np.clip(AlignerExtract().transform(image,
self.reference["matrix"],
size,
self.reference["padding"])[:, :, :3] / 255.0,
0.0, 1.0)
self.reference["face"] = face if dtype is None else face.astype(dtype)
logger.trace("Loaded reference face. (face_shape: %s, matrix: %s)",
self.reference_face.shape, self.reference_matrix)
@property
def original_roi(self):
""" Return the square aligned box location on the original
image """
roi = AlignerExtract().get_original_roi(self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
logger.trace("Returning: %s", roi)
return roi
@property
def aligned_landmarks(self):
""" Return the landmarks location transposed to extracted face """
landmarks = AlignerExtract().transform_points(self.landmarksXY,
self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
logger.trace("Returning: %s", landmarks)
return landmarks
@property
def aligned_face(self):
""" Return aligned detected face """
return self.aligned["face"]
@property
def adjusted_matrix(self):
""" Return adjusted matrix for size/padding combination """
mat = AlignerExtract().transform_matrix(self.aligned["matrix"],
self.aligned["size"],
self.aligned["padding"])
logger.trace("Returning: %s", mat)
return mat
@property
def adjusted_interpolators(self):
""" Return the interpolator and reverse interpolator for the adjusted matrix """
return get_matrix_scaling(self.adjusted_matrix)
@property
def feed_face(self):
""" Return face for feeding into NN """
return self.feed["face"]
@property
def feed_matrix(self):
""" Return matrix for transforming feed face back to image """
mat = AlignerExtract().transform_matrix(self.feed["matrix"],
self.feed["size"],
self.feed["padding"])
logger.trace("Returning: %s", mat)
return mat
@property
def feed_interpolators(self):
""" Return the interpolators for an input face """
return get_matrix_scaling(self.feed_matrix)
@property
def reference_face(self):
""" Return source face at size of output from NN for reference """
return self.reference["face"]
@property
def reference_landmarks(self):
""" Return the landmarks location transposed to reference face """
landmarks = AlignerExtract().transform_points(self.landmarksXY,
self.reference["matrix"],
self.reference["size"],
self.reference["padding"])
logger.trace("Returning: %s", landmarks)
return landmarks
@property
def reference_matrix(self):
""" Return matrix for transforming output face back to image """
mat = AlignerExtract().transform_matrix(self.reference["matrix"],
self.reference["size"],
self.reference["padding"])
logger.trace("Returning: %s", mat)
return mat
@property
def reference_interpolators(self):
""" Return the interpolators for an output face """
return get_matrix_scaling(self.reference_matrix)