mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 20:13:52 -04:00
384 lines
14 KiB
Python
384 lines
14 KiB
Python
#!/usr/bin/env python3
|
|
""" Normalization methods for faceswap.py. """
|
|
|
|
import sys
|
|
import inspect
|
|
|
|
from plaidml.op import slice_tensor
|
|
from keras.layers import Layer
|
|
from keras import initializers, regularizers, constraints
|
|
from keras import backend as K
|
|
from keras.utils import get_custom_objects
|
|
|
|
|
|
class LayerNormalization(Layer):
|
|
"""Instance normalization layer (Lei Ba et al, 2016). Implementation adapted from
|
|
tensorflow.keras implementation and https://github.com/CyberZHG/keras-layer-normalization
|
|
|
|
Normalize the activations of the previous layer for each given example in a batch
|
|
independently, rather than across a batch like Batch Normalization. i.e. applies a
|
|
transformation that maintains the mean activation within each example close to 0 and the
|
|
activation standard deviation close to 1.
|
|
|
|
Parameters
|
|
----------
|
|
axis: int or list/tuple
|
|
The axis or axes to normalize across. Typically this is the features axis/axes.
|
|
The left-out axes are typically the batch axis/axes. This argument defaults to `-1`, the
|
|
last dimension in the input.
|
|
epsilon: float, optional
|
|
Small float added to variance to avoid dividing by zero. Default: `1e-3`
|
|
center: bool, optional
|
|
If ``True``, add offset of `beta` to normalized tensor. If ``False``, `beta` is ignored.
|
|
Default: ``True``
|
|
scale: bool, optional
|
|
If ``True``, multiply by `gamma`. If ``False``, `gamma` is not used. When the next layer
|
|
is linear (also e.g. `relu`), this can be disabled since the scaling will be done by
|
|
the next layer. Default: ``True``
|
|
beta_initializer: str, optional
|
|
Initializer for the beta weight. Default: `"zeros"`
|
|
gamma_initializer: str, optional
|
|
Initializer for the gamma weight. Default: `"ones"`
|
|
beta_regularizer: str, optional
|
|
Optional regularizer for the beta weight. Default: ``None``
|
|
gamma_regularizer: str, optional
|
|
Optional regularizer for the gamma weight. Default: ``None``
|
|
beta_constraint: float, optional
|
|
Optional constraint for the beta weight. Default: ``None``
|
|
gamma_constraint: float, optional
|
|
Optional constraint for the gamma weight. Default: ``None``
|
|
kwargs: dict
|
|
Standard keras layer kwargs
|
|
|
|
References
|
|
----------
|
|
- Layer Normalization - https://arxiv.org/abs/1607.06450
|
|
- Keras implementation - https://github.com/CyberZHG/keras-layer-normalization
|
|
"""
|
|
def __init__(self,
|
|
axis=-1,
|
|
epsilon=1e-3,
|
|
center=True,
|
|
scale=True,
|
|
beta_initializer="zeros",
|
|
gamma_initializer="ones",
|
|
beta_regularizer=None,
|
|
gamma_regularizer=None,
|
|
beta_constraint=None,
|
|
gamma_constraint=None,
|
|
**kwargs):
|
|
|
|
self.gamma = None
|
|
self.beta = None
|
|
super().__init__(**kwargs)
|
|
|
|
if isinstance(axis, (list, tuple)):
|
|
self.axis = axis[:]
|
|
elif isinstance(axis, int):
|
|
self.axis = axis
|
|
else:
|
|
raise TypeError("Expected an int or a list/tuple of ints for the argument 'axis', "
|
|
f"but received: {axis}")
|
|
|
|
self.epsilon = epsilon
|
|
self.center = center
|
|
self.scale = scale
|
|
self.beta_initializer = initializers.get(beta_initializer)
|
|
self.gamma_initializer = initializers.get(gamma_initializer)
|
|
self.beta_regularizer = regularizers.get(beta_regularizer)
|
|
self.gamma_regularizer = regularizers.get(gamma_regularizer)
|
|
self.beta_constraint = constraints.get(beta_constraint)
|
|
self.gamma_constraint = constraints.get(gamma_constraint)
|
|
self.supports_masking = True
|
|
|
|
def build(self, input_shape):
|
|
"""Creates the layer weights.
|
|
|
|
Parameters
|
|
----------
|
|
input_shape: tensor
|
|
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
|
|
reference for weight shape computations.
|
|
"""
|
|
ndims = len(input_shape)
|
|
if ndims is None:
|
|
raise ValueError(f"Input shape {input_shape} has undefined rank.")
|
|
|
|
# Convert axis to list and resolve negatives
|
|
if isinstance(self.axis, int):
|
|
self.axis = [self.axis]
|
|
elif isinstance(self.axis, tuple):
|
|
self.axis = list(self.axis)
|
|
for idx, axs in enumerate(self.axis):
|
|
if axs < 0:
|
|
self.axis[idx] = ndims + axs
|
|
|
|
# Validate axes
|
|
for axs in self.axis:
|
|
if axs < 0 or axs >= ndims:
|
|
raise ValueError(f"Invalid axis: {axs}")
|
|
if len(self.axis) != len(set(self.axis)):
|
|
raise ValueError("Duplicate axis: {}".format(tuple(self.axis)))
|
|
|
|
param_shape = [input_shape[dim] for dim in self.axis]
|
|
if self.scale:
|
|
self.gamma = self.add_weight(
|
|
name="gamma",
|
|
shape=param_shape,
|
|
initializer=self.gamma_initializer,
|
|
regularizer=self.gamma_regularizer,
|
|
constraint=self.gamma_constraint)
|
|
if self.center:
|
|
self.beta = self.add_weight(
|
|
name='beta',
|
|
shape=param_shape,
|
|
initializer=self.beta_initializer,
|
|
regularizer=self.beta_regularizer,
|
|
constraint=self.beta_constraint)
|
|
|
|
self.built = True # pylint:disable=attribute-defined-outside-init
|
|
|
|
def call(self, inputs, **kwargs): # pylint:disable=unused-argument
|
|
"""This is where the layer's logic lives.
|
|
|
|
Parameters
|
|
----------
|
|
inputs: tensor
|
|
Input tensor, or list/tuple of input tensors
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
A tensor or list/tuple of tensors
|
|
"""
|
|
# Compute the axes along which to reduce the mean / variance
|
|
input_shape = K.int_shape(inputs)
|
|
ndims = len(input_shape)
|
|
|
|
# Broadcasting only necessary for norm when the axis is not just the last dimension
|
|
broadcast_shape = [1] * ndims
|
|
for dim in self.axis:
|
|
broadcast_shape[dim] = input_shape[dim]
|
|
|
|
def _broadcast(var):
|
|
if (var is not None and len(var.shape) != ndims and self.axis != [ndims - 1]):
|
|
return K.reshape(var, broadcast_shape)
|
|
return var
|
|
|
|
# Calculate the moments on the last axis (layer activations).
|
|
mean = K.mean(inputs, self.axis, keepdims=True)
|
|
variance = K.mean(K.square(inputs - mean), axis=self.axis, keepdims=True)
|
|
std = K.sqrt(variance + self.epsilon)
|
|
outputs = (inputs - mean) / std
|
|
|
|
scale, offset = _broadcast(self.gamma), _broadcast(self.beta)
|
|
if self.scale:
|
|
outputs *= scale
|
|
if self.center:
|
|
outputs *= offset
|
|
|
|
return outputs
|
|
|
|
def compute_output_shape(self, input_shape): # pylint:disable=no-self-use
|
|
""" The output shape of the layer is the same as the input shape.
|
|
|
|
Parameters
|
|
----------
|
|
input_shape: tuple
|
|
The input shape to the layer
|
|
|
|
Returns
|
|
-------
|
|
tuple
|
|
The output shape to the layer
|
|
"""
|
|
return input_shape
|
|
|
|
def get_config(self):
|
|
"""Returns the config of the layer.
|
|
|
|
A layer config is a Python dictionary (serializable) containing the configuration of a
|
|
layer. The same layer can be reinstated later (without its trained weights) from this
|
|
configuration.
|
|
|
|
The configuration of a layer does not include connectivity information, nor the layer
|
|
class name. These are handled by `Network` (one layer of abstraction above).
|
|
|
|
Returns
|
|
--------
|
|
dict
|
|
A python dictionary containing the layer configuration
|
|
"""
|
|
base_config = super().get_config()
|
|
config = dict(axis=self.axis,
|
|
epsilon=self.epsilon,
|
|
center=self.center,
|
|
scale=self.scale,
|
|
beta_initializer=initializers.serialize(self.beta_initializer),
|
|
gamma_initializer=initializers.serialize(self.gamma_initializer),
|
|
beta_regularizer=regularizers.serialize(self.beta_regularizer),
|
|
gamma_regularizer=regularizers.serialize(self.gamma_regularizer),
|
|
beta_constraint=constraints.serialize(self.beta_constraint),
|
|
gamma_constraint=constraints.serialize(self.gamma_constraint))
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
|
|
class RMSNormalization(Layer):
|
|
""" Root Mean Square Layer Normalization (Biao Zhang, Rico Sennrich, 2019)
|
|
|
|
RMSNorm is a simplification of the original layer normalization (LayerNorm). LayerNorm is a
|
|
regularization technique that might handle the internal covariate shift issue so as to
|
|
stabilize the layer activations and improve model convergence. It has been proved quite
|
|
successful in NLP-based model. In some cases, LayerNorm has become an essential component
|
|
to enable model optimization, such as in the SOTA NMT model Transformer.
|
|
|
|
RMSNorm simplifies LayerNorm by removing the mean-centering operation, or normalizing layer
|
|
activations with RMS statistic.
|
|
|
|
Parameters
|
|
----------
|
|
axis: int
|
|
The axis to normalize across. Typically this is the features axis. The left-out axes are
|
|
typically the batch axis/axes. This argument defaults to `-1`, the last dimension in the
|
|
input.
|
|
epsilon: float, optional
|
|
Small float added to variance to avoid dividing by zero. Default: `1e-8`
|
|
partial: float, optional
|
|
Partial multiplier for calculating pRMSNorm. Valid values are between `0.0` and `1.0`.
|
|
Setting to `0.0` or `1.0` disables. Default: `0.0`
|
|
bias: bool, optional
|
|
Whether to use a bias term for RMSNorm. Disabled by default because RMSNorm does not
|
|
enforce re-centering invariance. Default ``False``
|
|
kwargs: dict
|
|
Standard keras layer kwargs
|
|
|
|
References
|
|
----------
|
|
- RMS Normalization - https://arxiv.org/abs/1910.07467
|
|
- Official implementation - https://github.com/bzhangGo/rmsnorm
|
|
"""
|
|
def __init__(self, axis=-1, epsilon=1e-8, partial=0.0, bias=False, **kwargs):
|
|
self.scale = None
|
|
self.offset = 0
|
|
super().__init__(**kwargs)
|
|
|
|
# Checks
|
|
if not isinstance(axis, int):
|
|
raise TypeError(f"Expected an int for the argument 'axis', but received: {axis}")
|
|
|
|
if not 0.0 <= partial <= 1.0:
|
|
raise ValueError(f"partial must be between 0.0 and 1.0, but received {partial}")
|
|
|
|
self.axis = axis
|
|
self.epsilon = epsilon
|
|
self.partial = partial
|
|
self.bias = bias
|
|
self.offset = 0.
|
|
|
|
def build(self, input_shape):
|
|
""" Validate and populate :attr:`axis`
|
|
|
|
Parameters
|
|
----------
|
|
input_shape: tensor
|
|
Keras tensor (future input to layer) or ``list``/``tuple`` of Keras tensors to
|
|
reference for weight shape computations.
|
|
"""
|
|
ndims = len(input_shape)
|
|
if ndims is None:
|
|
raise ValueError(f"Input shape {input_shape} has undefined rank.")
|
|
|
|
# Resolve negative axis
|
|
if self.axis < 0:
|
|
self.axis += ndims
|
|
|
|
# Validate axes
|
|
if self.axis < 0 or self.axis >= ndims:
|
|
raise ValueError(f"Invalid axis: {self.axis}")
|
|
|
|
param_shape = [input_shape[self.axis]]
|
|
self.scale = self.add_weight(
|
|
name="scale",
|
|
shape=param_shape,
|
|
initializer="ones")
|
|
if self.bias:
|
|
self.offset = self.add_weight(
|
|
name="offset",
|
|
shape=param_shape,
|
|
initializer="zeros")
|
|
|
|
self.built = True # pylint:disable=attribute-defined-outside-init
|
|
|
|
def call(self, inputs, **kwargs): # pylint:disable=unused-argument
|
|
""" Call Root Mean Square Layer Normalization
|
|
|
|
Parameters
|
|
----------
|
|
inputs: tensor
|
|
Input tensor, or list/tuple of input tensors
|
|
|
|
Returns
|
|
-------
|
|
tensor
|
|
A tensor or list/tuple of tensors
|
|
"""
|
|
# Compute the axes along which to reduce the mean / variance
|
|
input_shape = K.int_shape(inputs)
|
|
layer_size = input_shape[self.axis]
|
|
|
|
if self.partial in (0.0, 1.0):
|
|
mean_square = K.mean(K.square(inputs), axis=self.axis, keepdims=True)
|
|
else:
|
|
partial_size = int(layer_size * self.partial)
|
|
partial_x = slice_tensor(inputs,
|
|
axes=[self.axis],
|
|
starts=[0],
|
|
ends=[partial_size])
|
|
mean_square = K.mean(K.square(partial_x), axis=self.axis, keepdims=True)
|
|
|
|
recip_square_root = 1. / K.sqrt(mean_square + self.epsilon)
|
|
output = self.scale * inputs * recip_square_root + self.offset
|
|
return output
|
|
|
|
def compute_output_shape(self, input_shape): # pylint:disable=no-self-use
|
|
""" The output shape of the layer is the same as the input shape.
|
|
|
|
Parameters
|
|
----------
|
|
input_shape: tuple
|
|
The input shape to the layer
|
|
|
|
Returns
|
|
-------
|
|
tuple
|
|
The output shape to the layer
|
|
"""
|
|
return input_shape
|
|
|
|
def get_config(self):
|
|
"""Returns the config of the layer.
|
|
|
|
A layer config is a Python dictionary (serializable) containing the configuration of a
|
|
layer. The same layer can be reinstated later (without its trained weights) from this
|
|
configuration.
|
|
|
|
The configuration of a layer does not include connectivity information, nor the layer
|
|
class name. These are handled by `Network` (one layer of abstraction above).
|
|
|
|
Returns
|
|
--------
|
|
dict
|
|
A python dictionary containing the layer configuration
|
|
"""
|
|
base_config = super().get_config()
|
|
config = dict(axis=self.axis,
|
|
epsilon=self.epsilon,
|
|
partial=self.partial,
|
|
bias=self.bias)
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
|
|
# Update normalization into Keras custom objects
|
|
for name, obj in inspect.getmembers(sys.modules[__name__]):
|
|
if inspect.isclass(obj) and obj.__module__ == __name__:
|
|
get_custom_objects().update({name: obj})
|