1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/tests/lib/model/initializers_test.py
torzdf 815c843f63
Simple backend unit tests (#1020)
* Add simple backend tests for lib.model
* Document lib.model
* Fix GMSD Loss for AMD
* Remove obsolete code from lib.model
2020-05-12 23:46:04 +01:00

62 lines
1.9 KiB
Python

#!/usr/bin/env python3
""" Tests for Faceswap Initializers.
Adapted from Keras tests.
"""
from keras import initializers as k_initializers
from keras import backend as K
import pytest
import numpy as np
from lib.model import initializers
from lib.utils import get_backend
CONV_SHAPE = (3, 3, 256, 2048)
CONV_ID = get_backend().upper()
def _runner(init, shape, target_mean=None, target_std=None,
target_max=None, target_min=None):
variable = K.variable(init(shape))
output = K.get_value(variable)
lim = 3e-2
if target_std is not None:
assert abs(output.std() - target_std) < lim
if target_mean is not None:
assert abs(output.mean() - target_mean) < lim
if target_max is not None:
assert abs(output.max() - target_max) < lim
if target_min is not None:
assert abs(output.min() - target_min) < lim
@pytest.mark.parametrize('tensor_shape', [CONV_SHAPE], ids=[CONV_ID])
def test_icnr(tensor_shape):
""" ICNR Initialization Test
Parameters
----------
tensor_shape: tuple
The shape of the tensor to feed to the initializer
"""
fan_in, _ = k_initializers._compute_fans(tensor_shape) # pylint:disable=protected-access
std = np.sqrt(2. / fan_in)
_runner(initializers.ICNR(initializer=k_initializers.he_uniform(), scale=2), tensor_shape,
target_mean=0, target_std=std)
@pytest.mark.parametrize('tensor_shape', [CONV_SHAPE], ids=[CONV_ID])
def test_convolution_aware(tensor_shape):
""" Convolution Aware Initialization Test
Parameters
----------
tensor_shape: tuple
The shape of the tensor to feed to the initializer
"""
fan_in, _ = k_initializers._compute_fans(tensor_shape) # pylint:disable=protected-access
std = np.sqrt(2. / fan_in)
_runner(initializers.ConvolutionAware(seed=123, init=True), tensor_shape,
target_mean=0, target_std=std)