mirror of
https://github.com/deepfakes/faceswap
synced 2025-06-08 11:53:26 -04:00
* Clearer requirements for each platform
* Refactoring of old plugins (Model_Original + Extract_Align) + Cleanups
* Adding GAN128
* Update GAN to v2
* Create instance_normalization.py
* Fix decoder output
* Revert "Fix decoder output"
This reverts commit 3a8ecb8957
.
* Fix convert
* Enable all options except perceptual_loss by default
* Disable instance norm
* Update Model.py
* Update Trainer.py
* Match GAN128 to shaoanlu's latest v2
* Add first_order to GAN128
* Disable `use_perceptual_loss`
* Fix call to `self.first_order`
* Switch to average loss in output
* Constrain average to last 100 iterations
* Fix math, constrain average to intervals of 100
* Fix math averaging again
* Remove math and simplify this damn averagin
* Add gan128 conversion
* Update convert.py
* Use non-warped images in masked preview
* Add K.set_learning_phase(1) to gan64
* Add K.set_learning_phase(1) to gan128
* Add missing keras import
* Use non-warped images in masked preview for gan128
* Exclude deleted faces from conversion
* --input-aligned-dir defaults to "{input_dir}/aligned"
* Simplify map operation
* port 'face_alignment' from PyTorch to Keras. It works x2 faster, but initialization takes 20secs.
2DFAN-4.h5 and mmod_human_face_detector.dat included in lib\FaceLandmarksExtractor
fixed dlib vs tensorflow conflict: dlib must do op first, then load keras model, otherwise CUDA OOM error
if face location not found by CNN, its try to find by HOG.
removed this:
- if face.landmarks == None:
- print("Warning! landmarks not found. Switching to crop!")
- return cv2.resize(face.image, (size, size))
because DetectedFace always has landmarks
* Enabled masked converter for GAN models
* Histogram matching, cli option for perceptual loss
* Fix init() positional args error
* Add backwards compatibility for aligned filenames
* Fix masked converter
* Remove GAN converters
106 lines
4.2 KiB
Python
106 lines
4.2 KiB
Python
import cv2
|
|
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
import os
|
|
|
|
from lib.cli import DirectoryProcessor
|
|
from lib.utils import get_folder
|
|
from lib.multithreading import pool_process
|
|
from plugins.PluginLoader import PluginLoader
|
|
|
|
class ExtractTrainingData(DirectoryProcessor):
|
|
def create_parser(self, subparser, command, description):
|
|
self.parser = subparser.add_parser(
|
|
command,
|
|
help="Extract the faces from a pictures.",
|
|
description=description,
|
|
epilog="Questions and feedback: \
|
|
https://github.com/deepfakes/faceswap-playground"
|
|
)
|
|
|
|
def add_optional_arguments(self, parser):
|
|
parser.add_argument('-D', '--detector',
|
|
type=str,
|
|
choices=("hog", "cnn"), # case sensitive because this is used to load a plugin.
|
|
default="hog",
|
|
help="Detector to use. 'cnn' detects much more angles but will be much more resource intensive and may fail on large files.")
|
|
|
|
parser.add_argument('-f', '--filter',
|
|
type=str,
|
|
dest="filter",
|
|
default="filter.jpg",
|
|
help="Reference image for the person you want to process. Should be a front portrait"
|
|
)
|
|
|
|
parser.add_argument('-j', '--processes',
|
|
type=int,
|
|
default=1,
|
|
help="Number of processes to use.")
|
|
|
|
parser.add_argument('-s', '--skip-existing',
|
|
action='store_true',
|
|
dest='skip_existing',
|
|
default=False,
|
|
help="Skips frames already extracted.")
|
|
|
|
parser.add_argument('-dl', '--debug-landmarks',
|
|
action="store_true",
|
|
dest="debug_landmarks",
|
|
default=False,
|
|
help="Draw landmarks for debug.")
|
|
|
|
return parser
|
|
|
|
def process(self):
|
|
extractor_name = "Align" # TODO Pass as argument
|
|
self.extractor = PluginLoader.get_extractor(extractor_name)()
|
|
processes = self.arguments.processes
|
|
try:
|
|
if processes != 1:
|
|
files = list(self.read_directory())
|
|
for filename, faces in tqdm(pool_process(self.processFiles, files, processes=processes), total = len(files)):
|
|
self.num_faces_detected += 1
|
|
self.faces_detected[os.path.basename(filename)] = faces
|
|
else:
|
|
try:
|
|
for filename in tqdm(self.read_directory()):
|
|
image = cv2.imread(filename)
|
|
self.faces_detected[os.path.basename(filename)] = self.handleImage(image, filename)
|
|
except Exception as e:
|
|
print('Failed to extract from image: {}. Reason: {}'.format(filename, e))
|
|
finally:
|
|
self.write_alignments()
|
|
|
|
def processFiles(self, filename):
|
|
try:
|
|
image = cv2.imread(filename)
|
|
return filename, self.handleImage(image, filename)
|
|
except Exception as e:
|
|
print('Failed to extract from image: {}. Reason: {}'.format(filename, e))
|
|
|
|
def handleImage(self, image, filename):
|
|
count = 0
|
|
|
|
faces = self.get_faces(image)
|
|
rvals = []
|
|
for idx, face in faces:
|
|
count = idx
|
|
|
|
# Draws landmarks for debug
|
|
if self.arguments.debug_landmarks:
|
|
for (x, y) in face.landmarksAsXY():
|
|
cv2.circle(image, (x, y), 2, (0, 0, 255), -1)
|
|
|
|
resized_image = self.extractor.extract(image, face, 256)
|
|
output_file = get_folder(self.output_dir) / Path(filename).stem
|
|
cv2.imwrite('{}_{}{}'.format(str(output_file), str(idx), Path(filename).suffix), resized_image)
|
|
f = {
|
|
"x": face.x,
|
|
"w": face.w,
|
|
"y": face.y,
|
|
"h": face.h,
|
|
"landmarksXY": face.landmarksAsXY()
|
|
}
|
|
rvals.append(f)
|
|
return rvals
|