1
0
Fork 0
mirror of https://github.com/deepfakes/faceswap synced 2025-06-09 04:36:50 -04:00
faceswap/scripts/convert.py
Othniel Cundangan 810bd0bce7
Update GAN64 to v2 (#217)
* Clearer requirements for each platform

* Refactoring of old plugins (Model_Original + Extract_Align) + Cleanups

* Adding GAN128

* Update GAN to v2

* Create instance_normalization.py

* Fix decoder output

* Revert "Fix decoder output"

This reverts commit 3a8ecb8957.

* Fix convert

* Enable all options except perceptual_loss by default

* Disable instance norm

* Update Model.py

* Update Trainer.py

* Match GAN128 to shaoanlu's latest v2

* Add first_order to GAN128

* Disable `use_perceptual_loss`

* Fix call to `self.first_order`

* Switch to average loss in output

* Constrain average to last 100 iterations

* Fix math, constrain average to intervals of 100

* Fix math averaging again

* Remove math and simplify this damn averagin

* Add gan128 conversion

* Update convert.py

* Use non-warped images in masked preview

* Add K.set_learning_phase(1) to gan64

* Add K.set_learning_phase(1) to gan128

* Add missing keras import

* Use non-warped images in masked preview for gan128

* Exclude deleted faces from conversion

* --input-aligned-dir defaults to "{input_dir}/aligned"

* Simplify map operation

* port 'face_alignment' from PyTorch to Keras. It works x2 faster, but initialization takes 20secs.

2DFAN-4.h5 and mmod_human_face_detector.dat included in lib\FaceLandmarksExtractor

fixed dlib vs tensorflow conflict: dlib must do op first, then load keras model, otherwise CUDA OOM error

if face location not found by CNN, its try to find by HOG.

removed this:
-        if face.landmarks == None:
-            print("Warning! landmarks not found. Switching to crop!")
-            return cv2.resize(face.image, (size, size))
because DetectedFace always has landmarks

* Enabled masked converter for GAN models

* Histogram matching, cli option for perceptual loss

* Fix init() positional args error

* Add backwards compatibility for aligned filenames

* Fix masked converter

* Remove GAN converters
2018-03-09 19:43:24 -05:00

235 lines
11 KiB
Python

import cv2
import re
import os
from pathlib import Path
from tqdm import tqdm
from lib.cli import DirectoryProcessor, FullPaths
from lib.utils import BackgroundGenerator, get_folder, get_image_paths
from plugins.PluginLoader import PluginLoader
class ConvertImage(DirectoryProcessor):
filename = ''
def create_parser(self, subparser, command, description):
self.parser = subparser.add_parser(
command,
help="Convert a source image to a new one with the face swapped.",
description=description,
epilog="Questions and feedback: \
https://github.com/deepfakes/faceswap-playground"
)
def add_optional_arguments(self, parser):
parser.add_argument('-m', '--model-dir',
action=FullPaths,
dest="model_dir",
default="models",
help="Model directory. A directory containing the trained model \
you wish to process. Defaults to 'models'")
parser.add_argument('-a', '--input-aligned-dir',
action=FullPaths,
dest="input_aligned_dir",
default=None,
help="Input \"aligned directory\". A directory that should contain the \
aligned faces extracted from the input files. If you delete faces from \
this folder, they'll be skipped during conversion. If no aligned dir is \
specified, all faces will be converted.")
parser.add_argument('-t', '--trainer',
type=str,
choices=("Original", "LowMem", "GAN", "GAN128"), # case sensitive because this is used to load a plug-in.
default="Original",
help="Select the trainer that was used to create the model.")
parser.add_argument('-s', '--swap-model',
action="store_true",
dest="swap_model",
default=False,
help="Swap the model. Instead of A -> B, swap B -> A.")
parser.add_argument('-c', '--converter',
type=str,
choices=("Masked", "Adjust"), # case sensitive because this is used to load a plugin.
default="Masked",
help="Converter to use.")
parser.add_argument('-D', '--detector',
type=str,
choices=("hog", "cnn"), # case sensitive because this is used to load a plugin.
default="hog",
help="Detector to use. 'cnn' detects much more angles but will be much more resource intensive and may fail on large files.")
parser.add_argument('-fr', '--frame-ranges',
nargs="+",
type=str,
help="frame ranges to apply transfer to e.g. For frames 10 to 50 and 90 to 100 use --frame-ranges 10-50 90-100. \
Files must have the frame-number as the last number in the name!"
)
parser.add_argument('-d', '--discard-frames',
action="store_true",
dest="discard_frames",
default=False,
help="When used with --frame-ranges discards frames that are not processed instead of writing them out unchanged."
)
parser.add_argument('-f', '--filter',
type=str,
dest="filter",
default="filter.jpg",
help="Reference image for the person you want to process. Should be a front portrait"
)
parser.add_argument('-b', '--blur-size',
type=int,
default=2,
help="Blur size. (Masked converter only)")
parser.add_argument('-S', '--seamless',
action="store_true",
dest="seamless_clone",
default=False,
help="Use cv2's seamless clone. (Masked converter only)")
parser.add_argument('-M', '--mask-type',
type=str.lower, #lowercase this, because its just a string later on.
dest="mask_type",
choices=["rect", "facehull", "facehullandrect"],
default="facehullandrect",
help="Mask to use to replace faces. (Masked converter only)")
parser.add_argument('-e', '--erosion-kernel-size',
dest="erosion_kernel_size",
type=int,
default=None,
help="Erosion kernel size. (Masked converter only). Positive values apply erosion which reduces the edge of the swapped face. Negative values apply dilation which allows the swapped face to cover more space.")
parser.add_argument('-mh', '--match-histgoram',
action="store_true",
dest="match_histogram",
default=False,
help="Use histogram matching. (Masked converter only)")
parser.add_argument('-sm', '--smooth-mask',
action="store_true",
dest="smooth_mask",
default=True,
help="Smooth mask (Adjust converter only)")
parser.add_argument('-aca', '--avg-color-adjust',
action="store_true",
dest="avg_color_adjust",
default=True,
help="Average color adjust. (Adjust converter only)")
return parser
def process(self):
# Original & LowMem models go with Adjust or Masked converter
# Note: GAN prediction outputs a mask + an image, while other predicts only an image
model_name = self.arguments.trainer
conv_name = self.arguments.converter
self.input_aligned_dir = None
model = PluginLoader.get_model(model_name)(get_folder(self.arguments.model_dir))
if not model.load(self.arguments.swap_model):
print('Model Not Found! A valid model must be provided to continue!')
exit(1)
input_aligned_dir = Path(self.arguments.input_dir)/Path('aligned')
if self.arguments.input_aligned_dir is not None:
input_aligned_dir = self.arguments.input_aligned_dir
try:
self.input_aligned_dir = [Path(path) for path in get_image_paths(input_aligned_dir)]
if len(self.input_aligned_dir) == 0:
print('Aligned directory is empty, no faces will be converted!')
elif len(self.input_aligned_dir) <= len(self.input_dir)/3:
print('Aligned directory contains an amount of images much less than the input, are you sure this is the right directory?')
except:
print('Aligned directory not found. All faces listed in the alignments file will be converted.')
converter = PluginLoader.get_converter(conv_name)(model.converter(False),
trainer=self.arguments.trainer,
blur_size=self.arguments.blur_size,
seamless_clone=self.arguments.seamless_clone,
mask_type=self.arguments.mask_type,
erosion_kernel_size=self.arguments.erosion_kernel_size,
match_histogram=self.arguments.match_histogram,
smooth_mask=self.arguments.smooth_mask,
avg_color_adjust=self.arguments.avg_color_adjust
)
batch = BackgroundGenerator(self.prepare_images(), 1)
# frame ranges stuff...
self.frame_ranges = None
# split out the frame ranges and parse out "min" and "max" values
minmax = {
"min": 0, # never any frames less than 0
"max": float("inf")
}
if self.arguments.frame_ranges:
self.frame_ranges = [tuple(map(lambda q: minmax[q] if q in minmax.keys() else int(q), v.split("-"))) for v in self.arguments.frame_ranges]
# last number regex. I know regex is hacky, but its reliablyhacky(tm).
self.imageidxre = re.compile(r'(\d+)(?!.*\d)')
for item in batch.iterator():
self.convert(converter, item)
def check_skipframe(self, filename):
try:
idx = int(self.imageidxre.findall(filename)[0])
return not any(map(lambda b: b[0]<=idx<=b[1], self.frame_ranges))
except:
return False
def check_skipface(self, filename, face_idx):
aligned_face_name = '{}_{}{}'.format(Path(filename).stem, face_idx, Path(filename).suffix)
aligned_face_file = Path(self.arguments.input_aligned_dir) / Path(aligned_face_name)
# TODO: Remove this temporary fix for backwards compatibility of filenames
bk_compat_aligned_face_name = '{}{}{}'.format(Path(filename).stem, face_idx, Path(filename).suffix)
bk_compat_aligned_face_file = Path(self.arguments.input_aligned_dir) / Path(bk_compat_aligned_face_name)
return aligned_face_file not in self.input_aligned_dir and bk_compat_aligned_face_file not in self.input_aligned_dir
def convert(self, converter, item):
try:
(filename, image, faces) = item
skip = self.check_skipframe(filename)
if self.arguments.discard_frames and skip:
return
if not skip: # process frame as normal
for idx, face in faces:
if self.input_aligned_dir is not None and self.check_skipface(filename, idx):
print ('face {} for frame {} was deleted, skipping'.format(idx, os.path.basename(filename)))
continue
image = converter.patch_image(image, face, 64 if "128" not in self.arguments.trainer else 128)
# TODO: This switch between 64 and 128 is a hack for now. We should have a separate cli option for size
output_file = get_folder(self.output_dir) / Path(filename).name
cv2.imwrite(str(output_file), image)
except Exception as e:
print('Failed to convert image: {}. Reason: {}'.format(filename, e))
def prepare_images(self):
self.read_alignments()
is_have_alignments = self.have_alignments()
for filename in tqdm(self.read_directory()):
image = cv2.imread(filename)
if is_have_alignments:
if self.have_face(filename):
faces = self.get_faces_alignments(filename, image)
else:
print ('no alignment found for {}, skipping'.format(os.path.basename(filename)))
continue
else:
faces = self.get_faces(image)
yield filename, image, faces